Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Find Way to Lower Risk of Midair Collisions for Small Aircraft

20.05.2014

Researchers at North Carolina State University have developed new modifications for technology that helps pilots of small aircraft avoid midair collisions. The modified tools significantly improved pilot response times in making decisions to avert crashes.

At issue are “cockpit displays of traffic information” (CDTIs). These are GPS displays used by private pilots to track other aircraft in their vicinity. However, pilots often focus on the closest aircraft on the display – a habit that can pose a significant hazard.


A modified screen display helps pilots identify which plane poses the greatest risk to their flight path. Image: Carl Pankok.

If the pilot of Plane A sees two planes on the CDTI, he’s more likely to focus on the closest aircraft (Plane B). But if the more distant plane (Plane C) is moving at high speed, it could cross his path before Plane B does. Not paying enough attention to Plane C increases risk of a midair collision.

“Our goal was to modify a CDTI to help pilots recognize which other planes pose the greatest risk,” says Carl Pankok, lead author of a study on the work and a Ph.D. student in the Edward P. Fitts Department of Industrial and Systems Engineering at NC State. “And it worked.”

Researchers modified the CDTI so that the plane that would cross a pilot’s path first either began blinking or was colored yellow.

The researchers tested the modified CDTI in a flight simulator with a panel of licensed recreational pilots. The research team compared the pilots’ response times and decision-making accuracy when using the modified and unmodified displays.

“These pilots were already pretty good, but the modified CDTIs made them better,” Pankok says. “Their percentage of ‘correct’ decisions – minimizing risk – jumped from 88 percent to 96 percent. And their response times in scenarios where the farther aircraft was the higher-risk aircraft were cut in half; from 7.2 seconds to 3.7 seconds for blinking CDTIs, and to 4 seconds for yellow CDTIs.

“We’re not trying to make money off this,” Pankok says. “We’re hoping that CDTI manufacturers can incorporate these changes and possibly save lives.”

The paper, “Cockpit Displays of Traffic Information and Pilot Bias in Time-to-Contact Judgments,” is published in the June issue of Aviation, Space, and Environmental Medicine. Senior author of the paper is Dr. David Kaber, a professor in the Edward P. Fitts Department of Industrial and Systems Engineering at NC State. The work was supported by the U.S. National Institute for Occupational Safety and Health under grant No.2 T42 OH008673-08.

-shipman-

Note to Editors: The study abstract follows.

“Cockpit Displays of Traffic Information and Pilot Bias in Time-to-Contact Judgments”

Authors: Carl Pankok, Jr. and David B. Kaber, North Carolina State University

Published: June 2014, Aviation, Space, and Environmental Medicine

Abstract: Introduction: Pilots are susceptible to over-reliance on distance when making relative time-to-contact (TTC) judgments of surrounding intruders, referred to as “the distance bias.” We tested the effect of adding perceptual cues and an information feature to cockpit displays of traffic information to mitigate this bias. Method: Fourteen general aviation pilots participated in a simulated flight scenario and were asked to make relative TTC judgments. Three levels of perceptual cue (blinking, color-change, and no-cue) were crossed with two levels of velocity data tag (present and absent) with identification of the highest risk intruder as a response. Results: Perceptual cues were associated with more accurate high-risk intruder selection (color=95.95% correct, blinking= 95.98%, no-cue=87.89%), decreased response time (color=3.68 sec, blinking= 3.19 sec no-cue=6.08 sec), reduced visual attention demand (color=57% of attention, blinking= 58%, no-cue=62%), lower workload ratings (color=28.38/100, blinking= 29.66/100, no-cue=48.91/100), and higher performance confidence ratings (color=83.92/100, blinking=82.71/100, no-cue=58.85/100) than the no-cue displays. There was no difference between blinking and color cue displays. The data tag was associated with lower response times (present=4.13 sec, absent=4.50 sec) and higher confidence ratings (present=78.69/100, absent=71.63/100) than displays without. Displays including the blinking cue, color-change cue, and data tag were preferred over displays that did not include these features (color=8 pilots, blinking=6, no-cue=0). Discussion: The added display features were effective in mitigating the effect of the distance bias on pilot performance measures and received favorable subjective ratings.

Matt Shipman | Eurek Alert!
Further information:
http://news.ncsu.edu/releases/pankok-flight-2014/

Further reports about: Aircraft Aviation Cockpit Department Displays Engineering Engineers Medicine Pilot Space TTC Traffic perceptual

More articles from Transportation and Logistics:

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>