Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Find Way to Lower Risk of Midair Collisions for Small Aircraft

20.05.2014

Researchers at North Carolina State University have developed new modifications for technology that helps pilots of small aircraft avoid midair collisions. The modified tools significantly improved pilot response times in making decisions to avert crashes.

At issue are “cockpit displays of traffic information” (CDTIs). These are GPS displays used by private pilots to track other aircraft in their vicinity. However, pilots often focus on the closest aircraft on the display – a habit that can pose a significant hazard.


A modified screen display helps pilots identify which plane poses the greatest risk to their flight path. Image: Carl Pankok.

If the pilot of Plane A sees two planes on the CDTI, he’s more likely to focus on the closest aircraft (Plane B). But if the more distant plane (Plane C) is moving at high speed, it could cross his path before Plane B does. Not paying enough attention to Plane C increases risk of a midair collision.

“Our goal was to modify a CDTI to help pilots recognize which other planes pose the greatest risk,” says Carl Pankok, lead author of a study on the work and a Ph.D. student in the Edward P. Fitts Department of Industrial and Systems Engineering at NC State. “And it worked.”

Researchers modified the CDTI so that the plane that would cross a pilot’s path first either began blinking or was colored yellow.

The researchers tested the modified CDTI in a flight simulator with a panel of licensed recreational pilots. The research team compared the pilots’ response times and decision-making accuracy when using the modified and unmodified displays.

“These pilots were already pretty good, but the modified CDTIs made them better,” Pankok says. “Their percentage of ‘correct’ decisions – minimizing risk – jumped from 88 percent to 96 percent. And their response times in scenarios where the farther aircraft was the higher-risk aircraft were cut in half; from 7.2 seconds to 3.7 seconds for blinking CDTIs, and to 4 seconds for yellow CDTIs.

“We’re not trying to make money off this,” Pankok says. “We’re hoping that CDTI manufacturers can incorporate these changes and possibly save lives.”

The paper, “Cockpit Displays of Traffic Information and Pilot Bias in Time-to-Contact Judgments,” is published in the June issue of Aviation, Space, and Environmental Medicine. Senior author of the paper is Dr. David Kaber, a professor in the Edward P. Fitts Department of Industrial and Systems Engineering at NC State. The work was supported by the U.S. National Institute for Occupational Safety and Health under grant No.2 T42 OH008673-08.

-shipman-

Note to Editors: The study abstract follows.

“Cockpit Displays of Traffic Information and Pilot Bias in Time-to-Contact Judgments”

Authors: Carl Pankok, Jr. and David B. Kaber, North Carolina State University

Published: June 2014, Aviation, Space, and Environmental Medicine

Abstract: Introduction: Pilots are susceptible to over-reliance on distance when making relative time-to-contact (TTC) judgments of surrounding intruders, referred to as “the distance bias.” We tested the effect of adding perceptual cues and an information feature to cockpit displays of traffic information to mitigate this bias. Method: Fourteen general aviation pilots participated in a simulated flight scenario and were asked to make relative TTC judgments. Three levels of perceptual cue (blinking, color-change, and no-cue) were crossed with two levels of velocity data tag (present and absent) with identification of the highest risk intruder as a response. Results: Perceptual cues were associated with more accurate high-risk intruder selection (color=95.95% correct, blinking= 95.98%, no-cue=87.89%), decreased response time (color=3.68 sec, blinking= 3.19 sec no-cue=6.08 sec), reduced visual attention demand (color=57% of attention, blinking= 58%, no-cue=62%), lower workload ratings (color=28.38/100, blinking= 29.66/100, no-cue=48.91/100), and higher performance confidence ratings (color=83.92/100, blinking=82.71/100, no-cue=58.85/100) than the no-cue displays. There was no difference between blinking and color cue displays. The data tag was associated with lower response times (present=4.13 sec, absent=4.50 sec) and higher confidence ratings (present=78.69/100, absent=71.63/100) than displays without. Displays including the blinking cue, color-change cue, and data tag were preferred over displays that did not include these features (color=8 pilots, blinking=6, no-cue=0). Discussion: The added display features were effective in mitigating the effect of the distance bias on pilot performance measures and received favorable subjective ratings.

Matt Shipman | Eurek Alert!
Further information:
http://news.ncsu.edu/releases/pankok-flight-2014/

Further reports about: Aircraft Aviation Cockpit Department Displays Engineering Engineers Medicine Pilot Space TTC Traffic perceptual

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>