Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Find Way to Lower Risk of Midair Collisions for Small Aircraft

20.05.2014

Researchers at North Carolina State University have developed new modifications for technology that helps pilots of small aircraft avoid midair collisions. The modified tools significantly improved pilot response times in making decisions to avert crashes.

At issue are “cockpit displays of traffic information” (CDTIs). These are GPS displays used by private pilots to track other aircraft in their vicinity. However, pilots often focus on the closest aircraft on the display – a habit that can pose a significant hazard.


A modified screen display helps pilots identify which plane poses the greatest risk to their flight path. Image: Carl Pankok.

If the pilot of Plane A sees two planes on the CDTI, he’s more likely to focus on the closest aircraft (Plane B). But if the more distant plane (Plane C) is moving at high speed, it could cross his path before Plane B does. Not paying enough attention to Plane C increases risk of a midair collision.

“Our goal was to modify a CDTI to help pilots recognize which other planes pose the greatest risk,” says Carl Pankok, lead author of a study on the work and a Ph.D. student in the Edward P. Fitts Department of Industrial and Systems Engineering at NC State. “And it worked.”

Researchers modified the CDTI so that the plane that would cross a pilot’s path first either began blinking or was colored yellow.

The researchers tested the modified CDTI in a flight simulator with a panel of licensed recreational pilots. The research team compared the pilots’ response times and decision-making accuracy when using the modified and unmodified displays.

“These pilots were already pretty good, but the modified CDTIs made them better,” Pankok says. “Their percentage of ‘correct’ decisions – minimizing risk – jumped from 88 percent to 96 percent. And their response times in scenarios where the farther aircraft was the higher-risk aircraft were cut in half; from 7.2 seconds to 3.7 seconds for blinking CDTIs, and to 4 seconds for yellow CDTIs.

“We’re not trying to make money off this,” Pankok says. “We’re hoping that CDTI manufacturers can incorporate these changes and possibly save lives.”

The paper, “Cockpit Displays of Traffic Information and Pilot Bias in Time-to-Contact Judgments,” is published in the June issue of Aviation, Space, and Environmental Medicine. Senior author of the paper is Dr. David Kaber, a professor in the Edward P. Fitts Department of Industrial and Systems Engineering at NC State. The work was supported by the U.S. National Institute for Occupational Safety and Health under grant No.2 T42 OH008673-08.

-shipman-

Note to Editors: The study abstract follows.

“Cockpit Displays of Traffic Information and Pilot Bias in Time-to-Contact Judgments”

Authors: Carl Pankok, Jr. and David B. Kaber, North Carolina State University

Published: June 2014, Aviation, Space, and Environmental Medicine

Abstract: Introduction: Pilots are susceptible to over-reliance on distance when making relative time-to-contact (TTC) judgments of surrounding intruders, referred to as “the distance bias.” We tested the effect of adding perceptual cues and an information feature to cockpit displays of traffic information to mitigate this bias. Method: Fourteen general aviation pilots participated in a simulated flight scenario and were asked to make relative TTC judgments. Three levels of perceptual cue (blinking, color-change, and no-cue) were crossed with two levels of velocity data tag (present and absent) with identification of the highest risk intruder as a response. Results: Perceptual cues were associated with more accurate high-risk intruder selection (color=95.95% correct, blinking= 95.98%, no-cue=87.89%), decreased response time (color=3.68 sec, blinking= 3.19 sec no-cue=6.08 sec), reduced visual attention demand (color=57% of attention, blinking= 58%, no-cue=62%), lower workload ratings (color=28.38/100, blinking= 29.66/100, no-cue=48.91/100), and higher performance confidence ratings (color=83.92/100, blinking=82.71/100, no-cue=58.85/100) than the no-cue displays. There was no difference between blinking and color cue displays. The data tag was associated with lower response times (present=4.13 sec, absent=4.50 sec) and higher confidence ratings (present=78.69/100, absent=71.63/100) than displays without. Displays including the blinking cue, color-change cue, and data tag were preferred over displays that did not include these features (color=8 pilots, blinking=6, no-cue=0). Discussion: The added display features were effective in mitigating the effect of the distance bias on pilot performance measures and received favorable subjective ratings.

Matt Shipman | Eurek Alert!
Further information:
http://news.ncsu.edu/releases/pankok-flight-2014/

Further reports about: Aircraft Aviation Cockpit Department Displays Engineering Engineers Medicine Pilot Space TTC Traffic perceptual

More articles from Transportation and Logistics:

nachricht First electrical car ferry in the world in operation in Norway now
19.05.2015 | Siemens AG

nachricht Economic and effective security design
04.05.2015 | Fraunhofer Institute for Software and Systems Engineering ISST

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

NOAA's GOES-R satellite begins environmental testing

22.05.2015 | Information Technology

Hubble observes one-of-a-kind star nicknamed 'Nasty'

22.05.2015 | Physics and Astronomy

Penn researchers show that mental 'map' and 'compass' are two separate systems

22.05.2015 | Social Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>