Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecoluminance: LRC Develops New Method to Light Roundabouts

27.11.2012
Roundabouts, also known as traffic circles, are increasing in number across the U.S. These intersections generally increase traffic throughput while reducing the severity of automobile accidents.

However, as relatively new traffic features, modern roundabouts are sometimes described as confusing for drivers. One difference between roundabouts and conventional cross-type intersections is the location of pedestrian crosswalks.

Drivers may be less familiar with the location of crosswalks when driving through a roundabout. The Lighting Research Center (LRC) at Rensselaer Polytechnic Institute has developed a concept for roadway illumination called "Ecoluminance" which incorporates roadside vegetation with low-level pedestrian and landscape lighting, retroreflective markers, and light-emitting diode (LED) road and walkway illumination.

In a study sponsored jointly by the New York State Energy Research and Development Authority (NYSERDA) and by the New York State Department of Transportation (NYSDOT), the LRC designed, installed and evaluated new lighting approaches in real-world conditions. Senior Research Scientist John Bullough and LRC Director Mark Rea were the principal investigators for the study.

“Ecoluminance uses a combination of lighting and vegetation to provide visual delineation, illumination for important safety hazards and concerns, and cues about road geometry,” said Bullough.

The ecoluminance concept was implemented at a roundabout in the Town of Bethlehem in Albany County, New York with cooperation from the Town Board and the Public Works, Highway, Planning, and Police Departments. Researchers from the State University of New York College of Environmental Science and Forestry also assisted with the study, and companies General Electric Lighting, Forms + Surfaces and Lightspec Albany donated luminaires to the project.

During two preliminary demonstrations during the summer of 2011, the LRC installed lights and vegetation and obtained feedback from NYSERDA and NYSDOT engineers as well as from town officials and the Town of Bethlehem Bicycle and Pedestrian Committee. Based on this feedback, the LRC installed vegetation and retroreflective markers in the central island of the roundabout, LED landscape lighting to illuminate vegetation and trees, bollards at crosswalks, and LED overhead lighting along sidewalks and the road during the summer of 2012. Roadway edges and pedestrians were more visible than under the conventional lighting, and vehicles approached the roundabout with similar or slightly lower speeds.

Traditional lighting for roundabouts consists of a relatively large number of pole-mounted overhead luminaires, which are relatively expensive to operate because they are energy intensive. The LRC estimates that the initial cost of the ecoluminance system is similar to that of conventional lighting, but the energy use is only about a fourth, resulting in substantially lower energy costs as well as substantially lower light pollution impacts. "The ecoluminance concept could allow transportation agencies to integrate vegetation and lighting while reducing costs and environmental impacts," said Rea.

The LRC's report is available online at: https://www.dot.ny.gov/divisions/engineering/

technical-services/trans-r-and-d-repository/C-08-03FinalReport-Project18233-C0803.pdf

For more information, please visit the LRC website at http://www.lrc.rpi.edu/.

Contact:
Rebekah Mullaney
Lighting Research Center
Rensselaer Polytechnic Institute
Troy, NY
518-687-7118
mullar2@rpi.edu

Rebekah Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>