Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Driver Misjudgment and Landscape Variations Cause Collisions at Stop Sign Intersections

Stop signs are supposed to be traffic safety tools, but how effective are they? According to one Ryerson University researcher, intersections with stop signs can be some of the deadliest places on the road.

In 2005 the Ministry of Transportation reported 62,000 crossing and turning collisions at stop-sign controlled and other types of intersections throughout Ontario, resulting in nearly 150 deaths and approximately 16,000 injuries. That’s nearly five times the number of fatalities as rear-end collisions in the same year.

Professor Said Easa of Ryerson’s Department of Civil Engineering says that speed and driver misjudgment are to blame. “When you want to cross a road or make an angular turn,” he explains, “you must judge the speed of the oncoming vehicle, estimate how fast it will reach the intersection, and compare that to your own ability to safely accelerate and manoeuvre. It’s very difficult to do, especially for older people. Their perception-reaction time is slower than younger drivers.”

Dr. Easa specializes in highway design and road safety. His most recent papers examine how minor (two-lane) roads and major (two- and four-lane) roads intersect. He writes that in addition to driver misjudgment, curves, hills and valleys on major roads can negatively affect the sight line of a driver on a minor road.

Using collision data from more than 5,000-kilometres of rural two-lane highways in Washington State, Dr. Easa and his research associate Qing Chong You created five statistical models to predict the frequency of vehicle collisions.

Among their findings, the researchers discovered that the biggest predictors of collisions along curved roads were the degree of the curve; the width, length and grade of the road; the average annual daily traffic; and the number of intersecting roads per kilometre. Those results, Dr. Easa hopes, will eventually prove useful in evaluating road safety improvements and optimizing the cost-effectiveness of highway design.

In his second study, Dr. Easa created another mathematical model. This one, however, aims to improve safety at existing and new intersections that are obstructed by large curves on a major roadway. In particular, Dr. Easa was concerned with sight distance – that is, the time gap between when a driver on a minor road sees a vehicle that rounds a curve and comes into view on the major road and when this vehicle arrives at the intersection. Clearly, this time must be greater than the time required by the minor road vehicle to cross the road, or turn left or right.

To aid driver judgment, Professor Easa’s and one of his former PhD students, Dr. Essam Dabbour, collaborated to develop an in-vehicle collision prediction system for consumers that takes the guess-work out of intersections. The on-board system, which is still under development, would calculate whether or not it’s safe to proceed forward.

Dr. Easa and Qing Chong You’s research study, entitled Collision Prediction Models for Three-Dimensional Two-Lane Highways: Horizontal Curves, was published in the journal Transportation Research Record in September 2009. The research, which received support from the Natural Sciences and Engineering Research Council of Canada (NSERC), also earned the 2009 best paper award from the Operational Effects of Geometrics committee of the U.S. Transportation Board.

Dr. Easa’s second report, entitled Stop-Controlled Intersection Sight Distance: Minor Road on Tangent of Horizontal Curve, was published in the September issue of the Journal of Transportation Engineering. His collaborators were Ryerson Research Associate Muhammad Zain Ali and Civil Engineering Professor Mohammad Hamed of the Jordan University of Science and Technology.

Ryerson University is Canada's leader in innovative career-focused education, offering close to 100 PhD, master's, and undergraduate programs in the Faculty of Arts; the Faculty of Communication & Design; the Faculty of Community Services; the Faculty of Engineering, Architecture and Science; and the Ted Rogers School of Management. Ryerson University has graduate and undergraduate enrolment of 25,000 students. With more than 68,000 registrations annually, The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.

Heather Kearney | Newswise Science News
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>