Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driver Misjudgment and Landscape Variations Cause Collisions at Stop Sign Intersections

01.10.2009
Stop signs are supposed to be traffic safety tools, but how effective are they? According to one Ryerson University researcher, intersections with stop signs can be some of the deadliest places on the road.

In 2005 the Ministry of Transportation reported 62,000 crossing and turning collisions at stop-sign controlled and other types of intersections throughout Ontario, resulting in nearly 150 deaths and approximately 16,000 injuries. That’s nearly five times the number of fatalities as rear-end collisions in the same year.

Professor Said Easa of Ryerson’s Department of Civil Engineering says that speed and driver misjudgment are to blame. “When you want to cross a road or make an angular turn,” he explains, “you must judge the speed of the oncoming vehicle, estimate how fast it will reach the intersection, and compare that to your own ability to safely accelerate and manoeuvre. It’s very difficult to do, especially for older people. Their perception-reaction time is slower than younger drivers.”

Dr. Easa specializes in highway design and road safety. His most recent papers examine how minor (two-lane) roads and major (two- and four-lane) roads intersect. He writes that in addition to driver misjudgment, curves, hills and valleys on major roads can negatively affect the sight line of a driver on a minor road.

Using collision data from more than 5,000-kilometres of rural two-lane highways in Washington State, Dr. Easa and his research associate Qing Chong You created five statistical models to predict the frequency of vehicle collisions.

Among their findings, the researchers discovered that the biggest predictors of collisions along curved roads were the degree of the curve; the width, length and grade of the road; the average annual daily traffic; and the number of intersecting roads per kilometre. Those results, Dr. Easa hopes, will eventually prove useful in evaluating road safety improvements and optimizing the cost-effectiveness of highway design.

In his second study, Dr. Easa created another mathematical model. This one, however, aims to improve safety at existing and new intersections that are obstructed by large curves on a major roadway. In particular, Dr. Easa was concerned with sight distance – that is, the time gap between when a driver on a minor road sees a vehicle that rounds a curve and comes into view on the major road and when this vehicle arrives at the intersection. Clearly, this time must be greater than the time required by the minor road vehicle to cross the road, or turn left or right.

To aid driver judgment, Professor Easa’s and one of his former PhD students, Dr. Essam Dabbour, collaborated to develop an in-vehicle collision prediction system for consumers that takes the guess-work out of intersections. The on-board system, which is still under development, would calculate whether or not it’s safe to proceed forward.

Dr. Easa and Qing Chong You’s research study, entitled Collision Prediction Models for Three-Dimensional Two-Lane Highways: Horizontal Curves, was published in the journal Transportation Research Record in September 2009. The research, which received support from the Natural Sciences and Engineering Research Council of Canada (NSERC), also earned the 2009 best paper award from the Operational Effects of Geometrics committee of the U.S. Transportation Board.

Dr. Easa’s second report, entitled Stop-Controlled Intersection Sight Distance: Minor Road on Tangent of Horizontal Curve, was published in the September issue of the Journal of Transportation Engineering. His collaborators were Ryerson Research Associate Muhammad Zain Ali and Civil Engineering Professor Mohammad Hamed of the Jordan University of Science and Technology.

Ryerson University is Canada's leader in innovative career-focused education, offering close to 100 PhD, master's, and undergraduate programs in the Faculty of Arts; the Faculty of Communication & Design; the Faculty of Community Services; the Faculty of Engineering, Architecture and Science; and the Ted Rogers School of Management. Ryerson University has graduate and undergraduate enrolment of 25,000 students. With more than 68,000 registrations annually, The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.

Heather Kearney | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>