Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dispatch system could save money for trucking industry, make life easier for drivers

27.06.2013
Engineers at Oregon State University are studying a new approach to organize and route truck transportation that could save millions of dollars, improve the quality of life for thousands of truck drivers and make freight transportation far more efficient.
The findings, published recently in Transportation Research Part E, show the feasibility of the new system. More research is still needed before implementation, but there’s potential to revolutionize the way that truck transportation is handled in the United States and around the world, some experts say.

Loads could be delivered more rapidly, costs could be lowered, and the exhausting experience of some truck drivers who often spend two to three weeks on the road between visits back home might be greatly reduced. This difficult lifestyle often leads them to quit their job as a result.

That turnover problem is sufficiently severe that more long-haul, full-truckload drivers quit every year than there are trucks of that type on the road.

“The perceived quality of life for long-haul truck drivers is poor, and it shouldn’t have to be that way,” said Hector Vergara, an assistant professor in the OSU School of Mechanical, Industrial and Manufacturing Engineering, who is working on this project in collaboration with researchers at the University of Arkansas.

“It will take a transition for companies to see how the approach we are studying can work effectively, but it should help address several of the problems they face,” he said.

In truck transportation, some of the existing approaches include “point to point,” in which one driver stays with a full load all the way to its often-distant destination; “hub and spoke” systems in which less-than-full loads are changed at selected points; and “relay” networks in which the drivers change but the load stays on the truck.

None of these systems by themselves are ideal for long-haul transport. The hub and spoke system is among the most popular with drivers because they get home much more frequently, but it can be costly and inefficient for full-truckload transportation. Relay networks make sense in theory but are difficult to implement.

The new approach under study combines the relay system and the point-to-point system for full-truckload transport. The researchers at OSU developed a new mathematical approach to optimize the design of the dispatching system for the movement of goods and to minimize the impact on drivers. It’s one of the first models of its type to create a mixed-fleet dispatching system at a large scale.

“We now know this approach can work,” Vergara said. “Compared to point-to-point, this system should cut the length of trips a driver makes by about two-thirds, and get drivers back to their homes much more often. We can also keep loads moving while drivers rest, and because of that save significant amounts of money on the number of trucks needed to move a given amount of freight.”

The computer optimization determines the best way to dispatch loads and tells where to locate relay points, and how different loads should be routed through the relay network.

Truck transportation systems will never be perfect, researchers concede, because there are so many variables that can cause unpredictable problems – weather delays, road closures, traffic jams, truck breakdowns, driver illnesses. But the current system, especially for long-haul, point-to-point transport, is already riddled with problems, and significant improvements based on computer optimization should be possible.

Disillusionment with existing approaches led to a shortage of 125,000 truck drivers in 2011, the researchers noted in the study. The negative economic impacts of this system also reach beyond just the trucking industry, they said.

About the OSU College of Engineering: The OSU College of Engineering is among the nation¹s largest and most productive engineering programs. Since 1999, the college has more than tripled its research expenditures to $37.2 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

The study this story is based on is available online: http://hdl.handle.net/1957/38433

MEDIA CONTACT:
David Stauth,
541-737-0787

SOURCE:
Hector Vergara, 541-737-0955

Hector Vergara | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>