Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New dispatch system could save money for trucking industry, make life easier for drivers

27.06.2013
Engineers at Oregon State University are studying a new approach to organize and route truck transportation that could save millions of dollars, improve the quality of life for thousands of truck drivers and make freight transportation far more efficient.
The findings, published recently in Transportation Research Part E, show the feasibility of the new system. More research is still needed before implementation, but there’s potential to revolutionize the way that truck transportation is handled in the United States and around the world, some experts say.

Loads could be delivered more rapidly, costs could be lowered, and the exhausting experience of some truck drivers who often spend two to three weeks on the road between visits back home might be greatly reduced. This difficult lifestyle often leads them to quit their job as a result.

That turnover problem is sufficiently severe that more long-haul, full-truckload drivers quit every year than there are trucks of that type on the road.

“The perceived quality of life for long-haul truck drivers is poor, and it shouldn’t have to be that way,” said Hector Vergara, an assistant professor in the OSU School of Mechanical, Industrial and Manufacturing Engineering, who is working on this project in collaboration with researchers at the University of Arkansas.

“It will take a transition for companies to see how the approach we are studying can work effectively, but it should help address several of the problems they face,” he said.

In truck transportation, some of the existing approaches include “point to point,” in which one driver stays with a full load all the way to its often-distant destination; “hub and spoke” systems in which less-than-full loads are changed at selected points; and “relay” networks in which the drivers change but the load stays on the truck.

None of these systems by themselves are ideal for long-haul transport. The hub and spoke system is among the most popular with drivers because they get home much more frequently, but it can be costly and inefficient for full-truckload transportation. Relay networks make sense in theory but are difficult to implement.

The new approach under study combines the relay system and the point-to-point system for full-truckload transport. The researchers at OSU developed a new mathematical approach to optimize the design of the dispatching system for the movement of goods and to minimize the impact on drivers. It’s one of the first models of its type to create a mixed-fleet dispatching system at a large scale.

“We now know this approach can work,” Vergara said. “Compared to point-to-point, this system should cut the length of trips a driver makes by about two-thirds, and get drivers back to their homes much more often. We can also keep loads moving while drivers rest, and because of that save significant amounts of money on the number of trucks needed to move a given amount of freight.”

The computer optimization determines the best way to dispatch loads and tells where to locate relay points, and how different loads should be routed through the relay network.

Truck transportation systems will never be perfect, researchers concede, because there are so many variables that can cause unpredictable problems – weather delays, road closures, traffic jams, truck breakdowns, driver illnesses. But the current system, especially for long-haul, point-to-point transport, is already riddled with problems, and significant improvements based on computer optimization should be possible.

Disillusionment with existing approaches led to a shortage of 125,000 truck drivers in 2011, the researchers noted in the study. The negative economic impacts of this system also reach beyond just the trucking industry, they said.

About the OSU College of Engineering: The OSU College of Engineering is among the nation¹s largest and most productive engineering programs. Since 1999, the college has more than tripled its research expenditures to $37.2 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

The study this story is based on is available online: http://hdl.handle.net/1957/38433

MEDIA CONTACT:
David Stauth,
541-737-0787

SOURCE:
Hector Vergara, 541-737-0955

Hector Vergara | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>