Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First automatic driving in real city traffic world wide

08.10.2010
Research vehicle „Leonie“ drives automatically on the Braunschweig inner ring road

A world’s first in Braunschweig: For the first time, an automatic vehicle is driving in everyday city traffic today.


Leonie in front of the TU Braunschweig main building. TU Braunschweig

In the context of the research project “Stadtpilot”, the Technische Universität Braunschweig has developed a research vehicle in its competence centre Niedersächsisches Forschungszentrum Fahrzeugtechnik: it drives automatically along a given route in normal traffic.

On Braunschweig’s two-lane ring road, the research vehicle “Leonie” is able to conduct challenging driving maneuvers at speeds up to 60 km/h: lane keeping, behavior at intersections, avoiding obstacles, and adjusting distances and speeds to the flowing traffic. The route includes part of the Braunschweig ring road from Hans-Sommer-Straße to the intersection Hamburger Straße, and back. A safety driver ready to intervene in emergencies is compulsory.

Research project “Stadtpilot”

The research project „Stadtpilot“ is the only research project worldwide so far that realizes automatic driving in real city traffic. Already in 2007, the TU Braunschweig participated successfully in the DARPA Urban Challenge, the worldwide leading competition for autonomous vehicles: with the 2006 VW Passat Variant “Caroline”, the team CarOLO was in the finals as one of 11 teams out of the initial 89. Based on these experiences, an interdisciplinary team from three different faculties has now developed the follow-up “Leonie”.

“We have come a long way, from our first vehicle Caroline to Leonie”, Professor Markus Maurer explained. “Whereas, in the competition, we drove in a controlled scenario, it is now necessary to master the real traffic volume. Leonie is confronted by various traffic participants who drive differently, and sometimes even against the rules. It has to adjust its speed to the flowing traffic. And last not least, a substantial safety concept is necessary.”

“To drive autonomously Leonie has to know not only the traffic rules. We teach it all a human also needs to drive. It has to know its own position (through satellite positioning), ‘see’ its environment, evaluate speeds and obstacles (with its sensor concept), assess difficult traffic situations, and recognize dangers in advance. In addition, it must learn to get along with various human drivers in other vehicles”, says project leader Jörn Marten Wille.

It is the goal of the project “Stadtpilot” to drive autonomously around the Braunschweig inner ring road. The extremely complex environment makes the project challenging: the dense traffic on the two lane road is highly demanding for the environment perception; the narrow roads require precise lane planning; and the dense urban built-up area makes the exact positioning difficult.

“Stadtpilot” has been developed mainly at the Mobile Life Campus, the Wolfsburg location of the Niedersächsisches Forschungszentrum Fahrzeugtechnik (NFF). Experts from Control Engineering (Electrical Engineering), Flight Guidance (Mechanical Engineering) of the Technische Universität Braunschweig, as well as the Institute of Transportation Systems of the German Aerospace Center, and the University of Hildesheim. have been contributing to the project. The NFF having research in new concepts for a sustainable automotive mobility as main objective sees the project “Stadtpilot” as an essential research project. It is based at the NFF location in Wolfsburg.

Research vehicle „Leonie“

Leonie is a VW Passat station wagon, 2.0 TDI. With satellite positioning the vehicle can calculate its position in the traffic. Thanks to various laser scanners and radar sensors, Leonie can perceive its environment continuously and process the data.

The State of Lower Saxony has granted an exceptional permission for driving in real traffic (on the Braunschweig ring road). It is based on the expert opinion of the TÜV Nord Mobilität. A safety driver is compulsory. Another driver inputs the data of the traffic signals which are not yet recognized by Leonie.

Since the beginning of this year already, the team of the Stadtpilot project has conducted driving tests on the compound of the former Heinrich-der-Löwe-Kaserne in Braunschweig-Rautheim. Besides Leonie, a second research vehicle, Henry, is being built up within the NFF research field “Intelligent Vehicle”. Henry is not yet ready to drive, though.

Contact:

Prof. Markus Maurer
Dipl.-Ing. Jörn Marten Wille
TU Braunschweig
Institut für Regelungstechnik
Lehrstuhl für elektronische Fahrzeugsysteme
Hans-Sommer-Str. 66
D-38106 Braunschweig
Tel.: +49-531-391-63060
E-Mail: maurer@ifr.ing.tu-bs.de
wille@ifr.ing.tu-bs.de
Contact for the media:
Dr. Elisabeth Hoffmann
Leiterin Presse und Kommunikation
Technische Universität Braunschweig
Pockelsstr. 14, 38106 Braunschweig
Tel.: +49 531 391-4122
e.hoffmann@tu-braunschweig.de
presse@tu-braunschweig.de
www.tu-braunschweig.de/presse

Dr. Elisabeth Hoffmann | idw
Further information:
http://stadtpilot.tu-bs.de
http://www.dlr.de/desktopdefault.aspx/tabid-6216

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>