Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant gives Port of Rotterdam a good example

12.12.2008
According to researcher Albert Douma, of the University of Twente, it is possible to optimize the handling of inland container barges in the port of Rotterdam without management from the top. This is similar to the way in which ants organize themselves, without a central director. As a result of his ‘multi-agent’ approach, the time barges spend in the port can be reduced considerably.

Douma has developed a new method for the optimum planning of the rotation of a barge in the port: the barge loads or unloads containers at various terminals in the best possible order, that is, the order that gives the least delay.

A central director would seem to be the most obvious solution here, but this is not usual because barge and terminal operators do not like to divulge competition-sensitive information. However, the present system of making appointments is vulnerable and entails a great deal of uncertainty with regard to waiting times. In a port that is becoming busier and busier, this can cause unnecessary waiting times.

Agents negotiate
Douma has therefore opted for a multi-agent approach that is similar to the ‘self organization’ in an ant colony. An agent is an intelligent software program that has a limited number of tasks, as does the ant: it has to negotiate to the best of its abilities for its client but otherwise has no overview of the greater whole. The barges and terminals each have one of these agents. Mr Douma has the agents negotiate with regard to the ‘service time’ or total waiting time and handling time at any given terminal.

Of the negotiation strategies examined, this service time profile gave the best planning results. The barge’s agent asks for the service profiles of the terminals and can quickly determine the best order in which to visit the terminals. Subsequently the barge’s and the terminal’s agents agree on the times: the barge arrives before a certain time and the terminal promises to complete activities within a maximum service time.

Mr Douma says that simulations with the multi-agent approach in realistic port situations show that the method is able to considerably reduce the average time for which barges stay in the port. The total waiting time decreases, for example, because the barge operator will first try to make agreements with the terminal which seems to be causing a bottleneck; he uses the waiting time for that terminal efficiently by planning other terminals in that same period. However, the system is not rigid: the ‘service time’ concept allows a certain amount of leeway so that it is still possible for terminals to fit in other barges if circumstances change. The research also included the development of a ‘serious game’, which was played in various workshops with port professionals. The game sessions enabled the refinement of the agent concept and discussions on the feasibility of putting the system into practice.

Albert Douma has defended his PhD on 9 December . His thesis is titled ‘Aligning the operations of barges and terminals through distributed planning’. He was supervised by Dr Peter Schuur and Prof. Jos van Hillegersberg. The research is part of the national project TRANSUMO (Transition to Sustainable Mobility, www.transumo.nl) in The Netherlands and is being carried out at the Centre for Telematics and Information Technology (CTIT) of the University of Twente.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Transportation and Logistics:

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>