Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ant gives Port of Rotterdam a good example

12.12.2008
According to researcher Albert Douma, of the University of Twente, it is possible to optimize the handling of inland container barges in the port of Rotterdam without management from the top. This is similar to the way in which ants organize themselves, without a central director. As a result of his ‘multi-agent’ approach, the time barges spend in the port can be reduced considerably.

Douma has developed a new method for the optimum planning of the rotation of a barge in the port: the barge loads or unloads containers at various terminals in the best possible order, that is, the order that gives the least delay.

A central director would seem to be the most obvious solution here, but this is not usual because barge and terminal operators do not like to divulge competition-sensitive information. However, the present system of making appointments is vulnerable and entails a great deal of uncertainty with regard to waiting times. In a port that is becoming busier and busier, this can cause unnecessary waiting times.

Agents negotiate
Douma has therefore opted for a multi-agent approach that is similar to the ‘self organization’ in an ant colony. An agent is an intelligent software program that has a limited number of tasks, as does the ant: it has to negotiate to the best of its abilities for its client but otherwise has no overview of the greater whole. The barges and terminals each have one of these agents. Mr Douma has the agents negotiate with regard to the ‘service time’ or total waiting time and handling time at any given terminal.

Of the negotiation strategies examined, this service time profile gave the best planning results. The barge’s agent asks for the service profiles of the terminals and can quickly determine the best order in which to visit the terminals. Subsequently the barge’s and the terminal’s agents agree on the times: the barge arrives before a certain time and the terminal promises to complete activities within a maximum service time.

Mr Douma says that simulations with the multi-agent approach in realistic port situations show that the method is able to considerably reduce the average time for which barges stay in the port. The total waiting time decreases, for example, because the barge operator will first try to make agreements with the terminal which seems to be causing a bottleneck; he uses the waiting time for that terminal efficiently by planning other terminals in that same period. However, the system is not rigid: the ‘service time’ concept allows a certain amount of leeway so that it is still possible for terminals to fit in other barges if circumstances change. The research also included the development of a ‘serious game’, which was played in various workshops with port professionals. The game sessions enabled the refinement of the agent concept and discussions on the feasibility of putting the system into practice.

Albert Douma has defended his PhD on 9 December . His thesis is titled ‘Aligning the operations of barges and terminals through distributed planning’. He was supervised by Dr Peter Schuur and Prof. Jos van Hillegersberg. The research is part of the national project TRANSUMO (Transition to Sustainable Mobility, www.transumo.nl) in The Netherlands and is being carried out at the Centre for Telematics and Information Technology (CTIT) of the University of Twente.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>