Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Force flight control improvements

08.12.2010
Flying insects' altitude control mechanisms are the focus of research being conducted in a Caltech laboratory under an Air Force Office of Scientific Research grant that may lead to technology that controls altitude in a variety of aircraft for the Air Force.

"This work investigates sensory-motor feedback mechanisms in the insect brain that could inspire new approaches to flight stabilization and navigation in future insect-sized vehicles for the military," said Dr. Willard Larkin, AFOSR program manager who's supporting the work of lead researcher, Dr. Andrew Straw of Caltech.

The research is being conducted in a laboratory where scientists are studying how flies use visual information to guide flight in natural environments.

The scientists have found that, counter to earlier studies suggesting that insects adjust their height by measuring the motion beneath them as they fly, flies in fact follow horizontal edges of objects to regulate altitude. Remarkably, this edge following behavior is very similar to a rule they use for steering left and right and always turning towards vertical edges.

Straw noted that the flies don't have access to GPS or other radio signals that may also be unavailable in, for example, indoor environments.

"However, with a tiny brain they are able to perform a variety of tasks such as finding food and mates despite changing light levels, wind gusts, wing damage, and so on," he said. "Flies rely heavily on vision."

The scientists designed a virtual reality environment for their flying subjects which they found could regulate their altitude by enabling them to fly at the height of nearby horizontal visual, like the tops of rocks and vegetation.

"We developed a 3D fly tracking system which was our most significant technical challenge: localizing a fly in 3D nearly instantaneously," said Straw. "Next, we developed visual stimulus software capable of making use of this information to project virtual edges and textured floors in which we could modify the fly's sensory-motor feedback mechanism."

The 3D fly tracking system the researchers developed is significant because it will allow a rapid characterization of other fly behaviors with unprecedented levels of visual stimulus control.

Ultimately the scientists would like to build models of fly flight that can accurately predict behavior based on their sensory input and internal states.

"Additionally, being able to identify the neural circuits responsible for flight control would allow us to extend our understanding of how physiological processes implement behavior," said Straw.

In their next phase, the scientists will study more sophisticated flight behaviors, asking if the the fly creates a long-lasting neural representation of its visual surroundings or whether flight is only controlled by fast-acting reflexes.

ABOUT AFOSR:

The Air Force Office of Scientific Research, in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

Maria Callier | EurekAlert!
Further information:
http://www.afosr.af.mil

Further reports about: AFOSR Ambient Air Caltech physiological process radio signal

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>