Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air Force flight control improvements

08.12.2010
Flying insects' altitude control mechanisms are the focus of research being conducted in a Caltech laboratory under an Air Force Office of Scientific Research grant that may lead to technology that controls altitude in a variety of aircraft for the Air Force.

"This work investigates sensory-motor feedback mechanisms in the insect brain that could inspire new approaches to flight stabilization and navigation in future insect-sized vehicles for the military," said Dr. Willard Larkin, AFOSR program manager who's supporting the work of lead researcher, Dr. Andrew Straw of Caltech.

The research is being conducted in a laboratory where scientists are studying how flies use visual information to guide flight in natural environments.

The scientists have found that, counter to earlier studies suggesting that insects adjust their height by measuring the motion beneath them as they fly, flies in fact follow horizontal edges of objects to regulate altitude. Remarkably, this edge following behavior is very similar to a rule they use for steering left and right and always turning towards vertical edges.

Straw noted that the flies don't have access to GPS or other radio signals that may also be unavailable in, for example, indoor environments.

"However, with a tiny brain they are able to perform a variety of tasks such as finding food and mates despite changing light levels, wind gusts, wing damage, and so on," he said. "Flies rely heavily on vision."

The scientists designed a virtual reality environment for their flying subjects which they found could regulate their altitude by enabling them to fly at the height of nearby horizontal visual, like the tops of rocks and vegetation.

"We developed a 3D fly tracking system which was our most significant technical challenge: localizing a fly in 3D nearly instantaneously," said Straw. "Next, we developed visual stimulus software capable of making use of this information to project virtual edges and textured floors in which we could modify the fly's sensory-motor feedback mechanism."

The 3D fly tracking system the researchers developed is significant because it will allow a rapid characterization of other fly behaviors with unprecedented levels of visual stimulus control.

Ultimately the scientists would like to build models of fly flight that can accurately predict behavior based on their sensory input and internal states.

"Additionally, being able to identify the neural circuits responsible for flight control would allow us to extend our understanding of how physiological processes implement behavior," said Straw.

In their next phase, the scientists will study more sophisticated flight behaviors, asking if the the fly creates a long-lasting neural representation of its visual surroundings or whether flight is only controlled by fast-acting reflexes.

ABOUT AFOSR:

The Air Force Office of Scientific Research, in Arlington, Virginia, continues to expand the horizon of scientific knowledge through its leadership and management of the Air Force's basic research program. As a vital component of the Air Force Research Laboratory, AFOSR's mission is to discover, shape, and champion basic science that profoundly impacts the future Air Force.

Maria Callier | EurekAlert!
Further information:
http://www.afosr.af.mil

Further reports about: AFOSR Ambient Air Caltech physiological process radio signal

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>