Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Simple Way to Help Cities Monitor Traffic More Accurately

Cities count the number of cars on the road in order to plan everything from the timing of stoplights to road repairs. But the in-road metal detectors that do the counting can make errors – most often by registering that a car is present when one isn't.

One common error is called "splashover" because it usually involves an over-sensitive detector picking up the presence a vehicle in the next lane over – as if the signal from the car "splashed over" into the adjacent lane.

Now Ohio State University researchers have developed software to help city managers easily identify detectors that are prone to splashover and reprogram them to get more accurate numbers.

Benjamin Coifman, associate professor of Civil, Environmental and Geodetic Engineering at Ohio State, and doctoral student Ho Lee describe the software in the October 2012 issue of the journal Transportation Research Part C: Emerging Technologies.

For the study, Coifman and Lee monitored 68 in-road detectors in Columbus, Ohio. They found six detectors that were prone to erroneously detecting cars in adjacent lanes. Error rates ranged from less than 1 percent to 52 percent.

"A host of city services rely on these data. We've known about splashover for decades, but up until now, nobody had an effective automatic test for finding it," said Coifman. "With this software, we can help transportation departments know which detectors to trust when deciding how they should put their limited dollars to work."

People may not be familiar with the commonly used loop detectors, which are often present at intersections to activate a stoplight. When the detectors are visible, they look like rectangular cutouts in the road surface, where underground wiring connects the detector to a traffic box at the side of the road. The same detectors are often present at freeway onramps and exits, to help cities monitor congestion.

To see how often splashover occurred in the 68 detectors in the study, the researchers went to the sites, and noted whether a car was truly present each time a detector counted a car. Then they used those data to construct computer algorithms that would automatically identify the patterns of error.

In tests, the software correctly identified four of the six detectors that exhibited splashover. The two it missed were sites with error rates less than 1 percent – specifically 0.6 percent and 0.9 percent.

"We might not catch detectors in which one in 100 or one in 1,000 vehicles trigger splashover," Coifman said, "but for the detectors where the rate is one in 20, we'll catch it."

The discovery comes just as many American cities are moving toward the use of different technologies, such as roadside radar detectors, to monitor traffic.

"The world is moving away from loop detectors," Coifman added. "And the radar sensors that are replacing loop detectors are actually more prone to splashover-like errors."

These radar detectors bounce a signal off a car and measure the time it takes for the signal to return. Because the detectors are on the side of the road, small measurement errors often cause a single vehicle to be counted in two separate lanes by the radar.

The same algorithms they developed for loop detectors should work for radar detectors, Coifman said. The makers of radar detectors keep their software proprietary, so he can't readily test that hypothesis, though he points out that all of the details of the Ohio State algorithms are fully explained in the article, should radar makers wish to incorporate it into their products.

This study was facilitated by the Ohio Department of Transportation, and funded by NEXTRANS, the U.S. Department of Transportation Region V Regional University Transportation Center; and by the California PATH (Partners for Advanced Highways and Transit) Program of the University of California, in cooperation with the State of California Business, Transportation and Housing Agency, Department of Transportation.

Contact: Benjamin Coifman, (614) 292-4282; (Coifman is best reached by email.)

Written by Pam Frost Gorder, (614) 292-9475;

Pam Frost Gorder | EurekAlert!
Further information:

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>