Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'The Wright Brothers All Over Again': Cross-Disciplinary Cooperation Drives Unmanned Aerial Systems at UND

23.01.2009
University of North Dakota's Aerospace school researchers envision a place for UAS activities away from the world’s battlefields and smack dab in the mix of commercial aviation. They and researchers from several other UND departments imagine skies where unmanned aircraft co-exist seamlessly with jumbo airliners, crop dusters, parachutists, and birds. So they’ve begun working closely with the Department of Defense (DoD) and the Federal Aviation Administration on the many questions pervading unmanned flight.

UND’s John D. Odegard School of Aerospace Sciences built its reputation long ago as an innovative pioneer in training the world’s future pilots.

With its “manned” aviation legacy soaring, the school has turned to a new challenge, one that involves no pilot, at least not onboard the plane.

The field of Unmanned Aircraft Systems (UAS) has taken off rapidly in recent years in the military and with other governmental entities such as U.S. Customs and Border Protection. Both support fleets of aircraft flown by on-the-ground pilots, sometimes half a world away.

In the United States, their flight paths are deliberate and often confined to military-restricted airspace, far from the increasingly busy lanes of commercial air traffic.

But UND Aerospace researchers envision a place for UAS activities away from the world’s battlefields and smack dab in the mix of commercial aviation. They imagine skies where unmanned aircraft co-exist seamlessly with jumbo airliners, crop dusters, parachutists, and birds.

So they’ve begun working closely with the Department of Defense (DoD) and the Federal Aviation Administration on the many questions pervading unmanned flight.

Not just aerospace

They’re also working closely with other research divisions across the UND campus, including the School of Engineering and Mines, the College of Nursing’s Northern Plains Center for Behavioral Research, the School of Law, and the Center for Innovation, part of the College of Business and Public Administration.

It’s that kind of cross-disciplinary esprit de corps that has impressed outside funding agencies, which are more used to a UAS industry that’s rife with “islands” of research not interacting with each other.

“It did not take much to convince (DoD) that we’re all talking to each other, and that doesn’t happen at other universities, not nearly to the extent that it seems to happen here,” said Ben Trapnell, associate professor of aviation instruction at UND.

For example, an important issue in developing a civil unmanned aviation industry is creating a new paradigm within the regulations governing aircraft operations in the United States. The original drafters of FAA regulations could not have envisioned a world in which pilotless aircraft could be a significant element of commercial aviation.

Doug Marshall, associate professor of aviation and an attorney, has been working with the FAA to identify “gaps” in the existing regulatory framework and propose changes.

Marshall and aviation faculty members William Watson and Ernest Anderson have employed UND law students to help with the FAA-funded regulatory study. Marshall has been invited to sit on the FAA’s new Aviation Rule-Making Committee for small unmanned aircraft.

Federal funding alone for UAS research at UND has totaled about $6.9 million since 2005. The bulk of that money, about 80 percent, has gone to divisions within UND Aerospace, such as the Departments of Aviation and Atmospheric Sciences. The remainder has been dispersed to the School of Engineering and Mines.

Those federal dollars were administered by the Air Force and obtained for UND by Sen. Byron Dorgan, D-N.D., setting the stage for a UND Center for Defense Unmanned Aerial Vehicle Education.

North Dakota has kicked funding into the pot as well, with about $2.5 million for the Unmanned Aircraft Systems Center of Excellence.

On the radar

Trapnell, Marshall, and others have used that money to help further UAS research by developing a breakthrough radar system that gives UA pilots a clearer picture of what surrounds their aircraft, which is being remote-controlled in a ground-based cockpit sometimes hundreds or even thousands of miles away.

“It’s a phased-array radar system, which involves three radars for redundancy and accuracy that look into an area instead of outward from an area,” Trapnell said. “Phased-array radars provide not only the azimuth, or direction from the radar, and the range, which normal radars will give you, but also the angle from the horizon, which computes into altitude.”

The system was developed with the help of atmospheric sciences professors Mark Askelson and Chris Theisen. They were adept at writing the complex computer code needed to fuse the deluge of data from the three radars. In addition, Ron Marsh and other computer sciences faculty contributed to developing the visual display for the system.

The advance helps UA pilots see so-called “non-cooperative” flying objects: aircraft which do not have transponders and are not talking to air traffic control towers. Additionally, the system is being designed to see birds and certain weather elements that could prove dangerous to unmanned aircraft.

Current FAA rules make it incumbent that pilots keep their aircraft far enough away from other objects to avoid a collision. Current technology doesn’t provide UA pilots enough of an environmental picture for the FAA to allow them in unrestricted airspace without help. Public aircraft operators may obtain an authorizing certificate and waiver that requires the use of ground or airborne observers to mitigate the risk of mid-air collisions.

A long-term goal for UND Aerospace researchers is to convince the FAA to establish an unrestricted commercial UA test range over all of North Dakota.

“The field of unmanned aircraft is so diverse, yet so undefined, that North Dakota is a wonderful area to study and provide opportunities for significant research,” Trapnell said.

“There are so many questions without answers; it’s a wonderfully exciting field to be in. “What we’re trying to do is find a way forward,” he said. “Doug and I feel like we’re the Wright Brothers all over again.”

Engineering a solution

At the same time that Trapnell and Marshall are testing their ground-based UAS radar system, students and faculty members at the School of Engineering and Mines are creating the airborne collision-avoidance tools that will interpret and convey the information emitted by the radars and other “cooperative” aircraft.

“This requires electrical engineering expertise for the design of printed circuit boards and the integration of commercial, off-the-shelf electronic components, as well as mechanical engineering expertise for the design of payload structures and vibration-isolation solutions so that the acquired data is of high quality,” said Richard Schultz, professor of electrical engineering and department chair.

Schultz said the school has about 15 students currently involved in its UAS engineering team.

He co-directs the projects with the help of William Semke, associate professor of mechanical engineering.

Electrical engineering student Mariusz Czasrnomski (left) and mechanical engineering student David Dvorak (blue shirt) check the position of a payload inside a new UAV that will be used for testing various types of equipment.

But the engineering students don’t just work on the complex gadgetry that goes into a UA; they get their flying time in, as well. The engineering school has flown its payloads with both Lockheed Martin (Eagan, Minn.) and Raytheon Company (Tucson, Ariz.) over military-restricted airspace in North Dakota and Minnesota. Furthermore, the school has purchased its own UA for future airborne tests of those payloads.

Sometimes, however, testing sensitive engineering components in an actual flying situation can be a bit risky and expensive. Also, it can be a challenge to obtain flights in military-restricted airspace on a weekly or even a monthly basis.

To get around these hurdles, UND’s resourceful engineers simply strap their sensors, computers and lithium polymer batteries to the back of a pickup and drive it around the region to simulate the movement, albeit low-altitude movement, of a UA.

The pickup appears to be at negative 29,000 feet on area air-traffic-control radars, but that doesn’t matter. At least they’re able to be seen, said Matthew Lendway, an electrical engineering graduate student who is on his way to work for Raytheon.

“We have to see how it reacts in a moving environment,” Lendway said.

Pioneering curriculum

Apart from research, UND Aerospace also is making inroads as a pioneering teacher and trainer of all things UAS. In many ways, the school is forging the path for the burgeoning industry just like it did 40 years ago for manned aviation education.

“We bring that level of experience to the table that no one else is able to offer,” Marshall said. “The (UAS) industry has evolved as an engineering approach to solve some military needs, but it’s happened with relatively little input from the manned aviation community.”

Trapnell said UND Aerospace is working toward providing unmanned aircraft training at all levels, and they’re doing it within the current laws and regulations of civilian aviation. Trapnell and Marshall have modified the school’s current commercial aviation curriculum to incorporate the many aspects unique to UAS.

“This includes ground and flight training with unmanned systems that potentially range in size from the handheld to the Global Hawk (with a wingspan equivalent to a Boeing 737), Trapnell said.

They also are working with the FAA to develop a “certification” standard for UA pilots, something that doesn’t exist now. Trapnell and Marshall sit on influential national committees researching pilot certification and training.

UND Aerospace hopes to be able to start training UA pilots for certification in the fall of 2009.

“Over three years, we have evolved from being relative neophytes in a rapidly evolving industry to now being perceived from the outside as leaders in some respects,” Marshall said. “That’s not ego; that’s just the way it’s coming out.”

David Dodds | Newswise Science News
Further information:
http://www.und.edu

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>