Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'The Wright Brothers All Over Again': Cross-Disciplinary Cooperation Drives Unmanned Aerial Systems at UND

23.01.2009
University of North Dakota's Aerospace school researchers envision a place for UAS activities away from the world’s battlefields and smack dab in the mix of commercial aviation. They and researchers from several other UND departments imagine skies where unmanned aircraft co-exist seamlessly with jumbo airliners, crop dusters, parachutists, and birds. So they’ve begun working closely with the Department of Defense (DoD) and the Federal Aviation Administration on the many questions pervading unmanned flight.

UND’s John D. Odegard School of Aerospace Sciences built its reputation long ago as an innovative pioneer in training the world’s future pilots.

With its “manned” aviation legacy soaring, the school has turned to a new challenge, one that involves no pilot, at least not onboard the plane.

The field of Unmanned Aircraft Systems (UAS) has taken off rapidly in recent years in the military and with other governmental entities such as U.S. Customs and Border Protection. Both support fleets of aircraft flown by on-the-ground pilots, sometimes half a world away.

In the United States, their flight paths are deliberate and often confined to military-restricted airspace, far from the increasingly busy lanes of commercial air traffic.

But UND Aerospace researchers envision a place for UAS activities away from the world’s battlefields and smack dab in the mix of commercial aviation. They imagine skies where unmanned aircraft co-exist seamlessly with jumbo airliners, crop dusters, parachutists, and birds.

So they’ve begun working closely with the Department of Defense (DoD) and the Federal Aviation Administration on the many questions pervading unmanned flight.

Not just aerospace

They’re also working closely with other research divisions across the UND campus, including the School of Engineering and Mines, the College of Nursing’s Northern Plains Center for Behavioral Research, the School of Law, and the Center for Innovation, part of the College of Business and Public Administration.

It’s that kind of cross-disciplinary esprit de corps that has impressed outside funding agencies, which are more used to a UAS industry that’s rife with “islands” of research not interacting with each other.

“It did not take much to convince (DoD) that we’re all talking to each other, and that doesn’t happen at other universities, not nearly to the extent that it seems to happen here,” said Ben Trapnell, associate professor of aviation instruction at UND.

For example, an important issue in developing a civil unmanned aviation industry is creating a new paradigm within the regulations governing aircraft operations in the United States. The original drafters of FAA regulations could not have envisioned a world in which pilotless aircraft could be a significant element of commercial aviation.

Doug Marshall, associate professor of aviation and an attorney, has been working with the FAA to identify “gaps” in the existing regulatory framework and propose changes.

Marshall and aviation faculty members William Watson and Ernest Anderson have employed UND law students to help with the FAA-funded regulatory study. Marshall has been invited to sit on the FAA’s new Aviation Rule-Making Committee for small unmanned aircraft.

Federal funding alone for UAS research at UND has totaled about $6.9 million since 2005. The bulk of that money, about 80 percent, has gone to divisions within UND Aerospace, such as the Departments of Aviation and Atmospheric Sciences. The remainder has been dispersed to the School of Engineering and Mines.

Those federal dollars were administered by the Air Force and obtained for UND by Sen. Byron Dorgan, D-N.D., setting the stage for a UND Center for Defense Unmanned Aerial Vehicle Education.

North Dakota has kicked funding into the pot as well, with about $2.5 million for the Unmanned Aircraft Systems Center of Excellence.

On the radar

Trapnell, Marshall, and others have used that money to help further UAS research by developing a breakthrough radar system that gives UA pilots a clearer picture of what surrounds their aircraft, which is being remote-controlled in a ground-based cockpit sometimes hundreds or even thousands of miles away.

“It’s a phased-array radar system, which involves three radars for redundancy and accuracy that look into an area instead of outward from an area,” Trapnell said. “Phased-array radars provide not only the azimuth, or direction from the radar, and the range, which normal radars will give you, but also the angle from the horizon, which computes into altitude.”

The system was developed with the help of atmospheric sciences professors Mark Askelson and Chris Theisen. They were adept at writing the complex computer code needed to fuse the deluge of data from the three radars. In addition, Ron Marsh and other computer sciences faculty contributed to developing the visual display for the system.

The advance helps UA pilots see so-called “non-cooperative” flying objects: aircraft which do not have transponders and are not talking to air traffic control towers. Additionally, the system is being designed to see birds and certain weather elements that could prove dangerous to unmanned aircraft.

Current FAA rules make it incumbent that pilots keep their aircraft far enough away from other objects to avoid a collision. Current technology doesn’t provide UA pilots enough of an environmental picture for the FAA to allow them in unrestricted airspace without help. Public aircraft operators may obtain an authorizing certificate and waiver that requires the use of ground or airborne observers to mitigate the risk of mid-air collisions.

A long-term goal for UND Aerospace researchers is to convince the FAA to establish an unrestricted commercial UA test range over all of North Dakota.

“The field of unmanned aircraft is so diverse, yet so undefined, that North Dakota is a wonderful area to study and provide opportunities for significant research,” Trapnell said.

“There are so many questions without answers; it’s a wonderfully exciting field to be in. “What we’re trying to do is find a way forward,” he said. “Doug and I feel like we’re the Wright Brothers all over again.”

Engineering a solution

At the same time that Trapnell and Marshall are testing their ground-based UAS radar system, students and faculty members at the School of Engineering and Mines are creating the airborne collision-avoidance tools that will interpret and convey the information emitted by the radars and other “cooperative” aircraft.

“This requires electrical engineering expertise for the design of printed circuit boards and the integration of commercial, off-the-shelf electronic components, as well as mechanical engineering expertise for the design of payload structures and vibration-isolation solutions so that the acquired data is of high quality,” said Richard Schultz, professor of electrical engineering and department chair.

Schultz said the school has about 15 students currently involved in its UAS engineering team.

He co-directs the projects with the help of William Semke, associate professor of mechanical engineering.

Electrical engineering student Mariusz Czasrnomski (left) and mechanical engineering student David Dvorak (blue shirt) check the position of a payload inside a new UAV that will be used for testing various types of equipment.

But the engineering students don’t just work on the complex gadgetry that goes into a UA; they get their flying time in, as well. The engineering school has flown its payloads with both Lockheed Martin (Eagan, Minn.) and Raytheon Company (Tucson, Ariz.) over military-restricted airspace in North Dakota and Minnesota. Furthermore, the school has purchased its own UA for future airborne tests of those payloads.

Sometimes, however, testing sensitive engineering components in an actual flying situation can be a bit risky and expensive. Also, it can be a challenge to obtain flights in military-restricted airspace on a weekly or even a monthly basis.

To get around these hurdles, UND’s resourceful engineers simply strap their sensors, computers and lithium polymer batteries to the back of a pickup and drive it around the region to simulate the movement, albeit low-altitude movement, of a UA.

The pickup appears to be at negative 29,000 feet on area air-traffic-control radars, but that doesn’t matter. At least they’re able to be seen, said Matthew Lendway, an electrical engineering graduate student who is on his way to work for Raytheon.

“We have to see how it reacts in a moving environment,” Lendway said.

Pioneering curriculum

Apart from research, UND Aerospace also is making inroads as a pioneering teacher and trainer of all things UAS. In many ways, the school is forging the path for the burgeoning industry just like it did 40 years ago for manned aviation education.

“We bring that level of experience to the table that no one else is able to offer,” Marshall said. “The (UAS) industry has evolved as an engineering approach to solve some military needs, but it’s happened with relatively little input from the manned aviation community.”

Trapnell said UND Aerospace is working toward providing unmanned aircraft training at all levels, and they’re doing it within the current laws and regulations of civilian aviation. Trapnell and Marshall have modified the school’s current commercial aviation curriculum to incorporate the many aspects unique to UAS.

“This includes ground and flight training with unmanned systems that potentially range in size from the handheld to the Global Hawk (with a wingspan equivalent to a Boeing 737), Trapnell said.

They also are working with the FAA to develop a “certification” standard for UA pilots, something that doesn’t exist now. Trapnell and Marshall sit on influential national committees researching pilot certification and training.

UND Aerospace hopes to be able to start training UA pilots for certification in the fall of 2009.

“Over three years, we have evolved from being relative neophytes in a rapidly evolving industry to now being perceived from the outside as leaders in some respects,” Marshall said. “That’s not ego; that’s just the way it’s coming out.”

David Dodds | Newswise Science News
Further information:
http://www.und.edu

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>