Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zombie ant fungi manipulate hosts to die on the 'doorstep' of the colony

19.08.2014

A parasitic fungus that must kill its ant hosts outside their nest to reproduce and transmit their infection, manipulates its victims to die in the vicinity of the colony, ensuring a constant supply of potential new hosts, according to researchers at Penn State and colleagues at Brazil's Federal University of Vicosa.

Previous research shows that Ophiocordyceps camponoti-rufipedis, known as the "zombie ant fungus," controls the behavior of carpenter ant workers -- Camponotus rufipes -- to die with precision attached to leaves in the understory of tropical forests, noted study lead author Raquel Loreto, doctoral candidate in entomology, Penn State's College of Agricultural Sciences.

Zombie Ant

After killing its host, the so-called zombie ant fungus grows from the cadaver and produces spores, which rain down on the forest floor to infect new hosts.

Credit: College of Agricultural Sciences, Penn State

"After climbing vegetation and biting the veins or margins on the underside of leaves, infected ants die, remaining attached to the leaf postmortem, where they serve as a platform for fungal growth," Loreto said.

The fungus grows a stalk, called the stroma, which protrudes from the ant cadaver. A large round structure, known as the ascoma, forms on the stroma. Infectious spores then develop in the ascoma and are discharged onto the forest floor below, where they can infect foraging ants from the colony.

... more about:
»ants »colonies »colony »fungal »fungi »fungus »immunity »nests »parasite

This fungal reproductive activity must take place outside the ant colony, in part because of the ants' social immunity, which is collective action taken to limit disease spread, explained study co-author David Hughes, assistant professor of entomology and biology, Penn State.

"Previous laboratory studies have shown that social immunity is an important feature of insect societies, especially for ants," Hughes said. "For the first time, we found evidence of social immunity in ant societies under field conditions."

The researchers tested social immunity by placing 28 ants freshly killed by the fungus inside two nests -- 14 in a nest with live ants and 14 in one with no ants. They found that the fungus was not able to develop properly in any of the 28 cadavers. In the nest with live ants, nine of the 14 infected cadavers disappeared, presumably removed by the ants in an effort to thwart the disease organism.

"Ants are remarkably adept at cleaning the interior of the nest to prevent diseases," Hughes said. "But we also found that this fungal parasite can't grow to the stage suitable for transmission inside the nest whether ants are present or not. This may be because the physical space and microclimate inside the nest don't allow the fungus to complete its development."

Next the researchers set out to record the prevalence of the fungus among ant colonies within the study area, which was located at the Mata do Paraíso research station in southeast Brazil. After marking and searching 22 transects covering a total of 16,988 square miles, they discovered that all 17 nests found had ant cadavers attached to leaves beside the colony, suggesting a fungal prevalence of 100 percent at the ant population level.

In a more detailed, 20-month survey of four of those ant colonies, the scientists measured parasite pressure by mapping the precise locations of fungus-killed ants and foraging trails in close proximity to the nests.

"We limited our survey to the immediate area surrounding the nest because this is the zone the ants must walk through to leave and return to the colony," Loreto said. "To better understand the path workers ants took, we measured and mapped in 3-D the trails formed by the ants, and that allowed us to determine spatial location of potential new hosts, which would be on the foraging trails."

By measuring the position of manipulated ants and plotting these locations with respect to the nest, the researchers established that infected ants die on the "doorstep" of the colony.

"What the zombie fungi essentially do is create a sniper's alley through which their future hosts must pass," Hughes said. "The parasite doesn't need to evolve mechanisms to overcome the effective social immunity that occurs inside the nest. At the same time, it ensures a constant supply of susceptible hosts."

Despite the high prevalence of infected colonies and persistence of the fungus over time, the researchers did not observe colony collapse, suggesting that the parasite functions as a long-lasting but tolerable condition for the ants.

"We suggest that the parasite can be characterized as a 'chronic disease' that, as in humans, can be controlled but not cured," Loreto said.

###

The research, which was funded by CAPES-Brazil and Penn State, was published today (Aug. 18) in PLOS ONE.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: ants colonies colony fungal fungi fungus immunity nests parasite

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>