Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zombie ant fungi manipulate hosts to die on the 'doorstep' of the colony

19.08.2014

A parasitic fungus that must kill its ant hosts outside their nest to reproduce and transmit their infection, manipulates its victims to die in the vicinity of the colony, ensuring a constant supply of potential new hosts, according to researchers at Penn State and colleagues at Brazil's Federal University of Vicosa.

Previous research shows that Ophiocordyceps camponoti-rufipedis, known as the "zombie ant fungus," controls the behavior of carpenter ant workers -- Camponotus rufipes -- to die with precision attached to leaves in the understory of tropical forests, noted study lead author Raquel Loreto, doctoral candidate in entomology, Penn State's College of Agricultural Sciences.

Zombie Ant

After killing its host, the so-called zombie ant fungus grows from the cadaver and produces spores, which rain down on the forest floor to infect new hosts.

Credit: College of Agricultural Sciences, Penn State

"After climbing vegetation and biting the veins or margins on the underside of leaves, infected ants die, remaining attached to the leaf postmortem, where they serve as a platform for fungal growth," Loreto said.

The fungus grows a stalk, called the stroma, which protrudes from the ant cadaver. A large round structure, known as the ascoma, forms on the stroma. Infectious spores then develop in the ascoma and are discharged onto the forest floor below, where they can infect foraging ants from the colony.

... more about:
»ants »colonies »colony »fungal »fungi »fungus »immunity »nests »parasite

This fungal reproductive activity must take place outside the ant colony, in part because of the ants' social immunity, which is collective action taken to limit disease spread, explained study co-author David Hughes, assistant professor of entomology and biology, Penn State.

"Previous laboratory studies have shown that social immunity is an important feature of insect societies, especially for ants," Hughes said. "For the first time, we found evidence of social immunity in ant societies under field conditions."

The researchers tested social immunity by placing 28 ants freshly killed by the fungus inside two nests -- 14 in a nest with live ants and 14 in one with no ants. They found that the fungus was not able to develop properly in any of the 28 cadavers. In the nest with live ants, nine of the 14 infected cadavers disappeared, presumably removed by the ants in an effort to thwart the disease organism.

"Ants are remarkably adept at cleaning the interior of the nest to prevent diseases," Hughes said. "But we also found that this fungal parasite can't grow to the stage suitable for transmission inside the nest whether ants are present or not. This may be because the physical space and microclimate inside the nest don't allow the fungus to complete its development."

Next the researchers set out to record the prevalence of the fungus among ant colonies within the study area, which was located at the Mata do Paraíso research station in southeast Brazil. After marking and searching 22 transects covering a total of 16,988 square miles, they discovered that all 17 nests found had ant cadavers attached to leaves beside the colony, suggesting a fungal prevalence of 100 percent at the ant population level.

In a more detailed, 20-month survey of four of those ant colonies, the scientists measured parasite pressure by mapping the precise locations of fungus-killed ants and foraging trails in close proximity to the nests.

"We limited our survey to the immediate area surrounding the nest because this is the zone the ants must walk through to leave and return to the colony," Loreto said. "To better understand the path workers ants took, we measured and mapped in 3-D the trails formed by the ants, and that allowed us to determine spatial location of potential new hosts, which would be on the foraging trails."

By measuring the position of manipulated ants and plotting these locations with respect to the nest, the researchers established that infected ants die on the "doorstep" of the colony.

"What the zombie fungi essentially do is create a sniper's alley through which their future hosts must pass," Hughes said. "The parasite doesn't need to evolve mechanisms to overcome the effective social immunity that occurs inside the nest. At the same time, it ensures a constant supply of susceptible hosts."

Despite the high prevalence of infected colonies and persistence of the fungus over time, the researchers did not observe colony collapse, suggesting that the parasite functions as a long-lasting but tolerable condition for the ants.

"We suggest that the parasite can be characterized as a 'chronic disease' that, as in humans, can be controlled but not cured," Loreto said.

###

The research, which was funded by CAPES-Brazil and Penn State, was published today (Aug. 18) in PLOS ONE.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: ants colonies colony fungal fungi fungus immunity nests parasite

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>