Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc and the zebrafish

04.07.2011
Fluorescent fish could hold the key to understanding diabetes and other diseases

Scientists from Queen Mary, University of London have discovered a new way of detecting zinc in zebra fish, that could pave the way for furthering our understanding of diseases like type 2 diabetes, prostate cancer and Alzheimer's.

The results will be announced today (3 July) at the Sixth International Symposium on Macrocyclic and Supramolecular Chemistry, in Brighton.

Zinc is found throughout the body and involved in many metabolic pathways that affect the function of the immune system and brain, reproduction, and sexual development. Zinc is also increasingly recognised as a key element in the treatment of a range of diseases, for example type 2 diabetes, prostate cancer and Alzheimer's disease.

It's unclear whether zinc is a cause of disease, or if it's employed to prevent its development or progression, and there is great interest in developing a molecular probe which can detect zinc in the body. While a lot of work has been done in vitro, very few people have looked at how zinc works in whole organisms.

In this new study, Professor Mike Watkinson, Dr Stephen Goldup and Dr Caroline Brennan, from Queen Mary's School of Biological and Chemical Sciences, have focused their efforts on the development of a sensor for zinc to be used in studies on zebrafish (Danio rerio). Due to their fast development, zebra fish can be grown outside the mother's body, and their embryos are transparent, allowing for a clear observation of their organs.

The team designed a sensor which switched on fluorescence in the fish when zinc was present. Professor Mike Watkinson explains:"Our probe is able to visualise zinc in various parts of the fish embryos, including the pancreas and we are excited that we can develop the technology further to help understand the role of zinc in the development of important disease like Type 2 Diabetes."

The team used a technique called 'click' chemistry, which is designed to generate substances quickly and reliably by joining small units together.

The sensor was found to be particularly sensitive to identifying zinc rather than other anions such as iron or copper, and it is hoped that with further development the technology can be used by other scientists working in these important fields.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

Further reports about: Alzheimer Danio rerio immune system prostate cancer type 2 diabetes zebra fish zinc

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>