Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc and the zebrafish

04.07.2011
Fluorescent fish could hold the key to understanding diabetes and other diseases

Scientists from Queen Mary, University of London have discovered a new way of detecting zinc in zebra fish, that could pave the way for furthering our understanding of diseases like type 2 diabetes, prostate cancer and Alzheimer's.

The results will be announced today (3 July) at the Sixth International Symposium on Macrocyclic and Supramolecular Chemistry, in Brighton.

Zinc is found throughout the body and involved in many metabolic pathways that affect the function of the immune system and brain, reproduction, and sexual development. Zinc is also increasingly recognised as a key element in the treatment of a range of diseases, for example type 2 diabetes, prostate cancer and Alzheimer's disease.

It's unclear whether zinc is a cause of disease, or if it's employed to prevent its development or progression, and there is great interest in developing a molecular probe which can detect zinc in the body. While a lot of work has been done in vitro, very few people have looked at how zinc works in whole organisms.

In this new study, Professor Mike Watkinson, Dr Stephen Goldup and Dr Caroline Brennan, from Queen Mary's School of Biological and Chemical Sciences, have focused their efforts on the development of a sensor for zinc to be used in studies on zebrafish (Danio rerio). Due to their fast development, zebra fish can be grown outside the mother's body, and their embryos are transparent, allowing for a clear observation of their organs.

The team designed a sensor which switched on fluorescence in the fish when zinc was present. Professor Mike Watkinson explains:"Our probe is able to visualise zinc in various parts of the fish embryos, including the pancreas and we are excited that we can develop the technology further to help understand the role of zinc in the development of important disease like Type 2 Diabetes."

The team used a technique called 'click' chemistry, which is designed to generate substances quickly and reliably by joining small units together.

The sensor was found to be particularly sensitive to identifying zinc rather than other anions such as iron or copper, and it is hoped that with further development the technology can be used by other scientists working in these important fields.

Sian Halkyard | EurekAlert!
Further information:
http://www.qmul.ac.uk

Further reports about: Alzheimer Danio rerio immune system prostate cancer type 2 diabetes zebra fish zinc

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>