Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Think zinc: Molecular sensor could reveal zinc's role in diseases

01.09.2009
Scientists have developed a new molecular sensor that can reveal the amount of zinc in cells, which could tell us more about a number of diseases, including type 2 diabetes. The research, published today in Nature Methods, opens the door to the hidden world of zinc biology by giving scientists an accurate way of measuring the concentration of zinc and its location in cells for the first time.

Zinc is involved in many processes in the body and five percent of all the proteins made by the body's cells are involved in transporting zinc. Scientists believe that zinc plays a role in many diseases; for example, it helps package insulin in pancreas cells and in people with type 2 diabetes, the gene that controls this packaging is often defective.

Previously, researchers used crude chemical techniques to get a rough idea of the concentration of zinc in cells. However, they could not produce an accurate picture of how much zinc was present in cells or where it was within them.

In today's study, researchers from Imperial College London and Eindhoven University of Technology in The Netherlands have developed a molecular sensor using fluorescence proteins that can measure the distance between zinc ions in individual cells, showing how much zinc is present.

Professor Guy Rutter, one of the authors of the study from the Division of Medicine at Imperial College London, said: "There has been relatively little biological work done on zinc compared to other metals such as calcium and sodium, partly because we didn't have the tools to measure it accurately before now. Zinc is so important in the body – studies have suggested it has roles in many different areas, including muscles and the brain."

The new sensor, called a fluorescence resonance energy transfer (FRET)-based sensor, is made up of two jellyfish proteins called green fluorescent proteins. The researchers altered the first protein to give off light at a certain wavelength, and altered the second protein to collect that light. When the proteins attached to zinc ions, the proteins became pushed apart and the transmission of light between them became weaker. The researchers used a fluorescence microscope to detect the wavelengths of light emitted by the proteins. This revealed zinc in the cell, with coloured patches visible where the proteins detected zinc.

The researchers used their new sensor to look for zinc in pancreatic cells, where insulin is packaged around zinc ions. Previous research had suggested that in people with type 2 diabetes, the gene that controls the packaging process is often defective, affecting the way insulin is stored. The researchers found a high concentration of zinc ions inside certain parts of the cells where insulin is found. They hope their new sensor could help scientists look more closely at this to find out exactly how zinc is involved in diabetes.

"We can now measure very accurately the concentration of zinc in cells and we can also look at where it is inside the cell, using our molecular measuring device. This sort of information will help us to see what is going on inside different tissues, for example in the brain in Alzheimer's disease, where we also suspect zinc may be involved. We hope this new sensor will help researchers learn more about zinc-related diseases and potentially identify new ways of treating them," added Professor Rutter.

The researchers would now like to develop their new sensor to look at zinc in a living mouse model, so they can observe the movement of zinc in different tissues, for example in diabetes.

This research in the UK was funded by The Wellcome Trust, Medical Research Council (UK) the EU and Imperial College London.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>