Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Think zinc: Molecular sensor could reveal zinc's role in diseases

01.09.2009
Scientists have developed a new molecular sensor that can reveal the amount of zinc in cells, which could tell us more about a number of diseases, including type 2 diabetes. The research, published today in Nature Methods, opens the door to the hidden world of zinc biology by giving scientists an accurate way of measuring the concentration of zinc and its location in cells for the first time.

Zinc is involved in many processes in the body and five percent of all the proteins made by the body's cells are involved in transporting zinc. Scientists believe that zinc plays a role in many diseases; for example, it helps package insulin in pancreas cells and in people with type 2 diabetes, the gene that controls this packaging is often defective.

Previously, researchers used crude chemical techniques to get a rough idea of the concentration of zinc in cells. However, they could not produce an accurate picture of how much zinc was present in cells or where it was within them.

In today's study, researchers from Imperial College London and Eindhoven University of Technology in The Netherlands have developed a molecular sensor using fluorescence proteins that can measure the distance between zinc ions in individual cells, showing how much zinc is present.

Professor Guy Rutter, one of the authors of the study from the Division of Medicine at Imperial College London, said: "There has been relatively little biological work done on zinc compared to other metals such as calcium and sodium, partly because we didn't have the tools to measure it accurately before now. Zinc is so important in the body – studies have suggested it has roles in many different areas, including muscles and the brain."

The new sensor, called a fluorescence resonance energy transfer (FRET)-based sensor, is made up of two jellyfish proteins called green fluorescent proteins. The researchers altered the first protein to give off light at a certain wavelength, and altered the second protein to collect that light. When the proteins attached to zinc ions, the proteins became pushed apart and the transmission of light between them became weaker. The researchers used a fluorescence microscope to detect the wavelengths of light emitted by the proteins. This revealed zinc in the cell, with coloured patches visible where the proteins detected zinc.

The researchers used their new sensor to look for zinc in pancreatic cells, where insulin is packaged around zinc ions. Previous research had suggested that in people with type 2 diabetes, the gene that controls the packaging process is often defective, affecting the way insulin is stored. The researchers found a high concentration of zinc ions inside certain parts of the cells where insulin is found. They hope their new sensor could help scientists look more closely at this to find out exactly how zinc is involved in diabetes.

"We can now measure very accurately the concentration of zinc in cells and we can also look at where it is inside the cell, using our molecular measuring device. This sort of information will help us to see what is going on inside different tissues, for example in the brain in Alzheimer's disease, where we also suspect zinc may be involved. We hope this new sensor will help researchers learn more about zinc-related diseases and potentially identify new ways of treating them," added Professor Rutter.

The researchers would now like to develop their new sensor to look at zinc in a living mouse model, so they can observe the movement of zinc in different tissues, for example in diabetes.

This research in the UK was funded by The Wellcome Trust, Medical Research Council (UK) the EU and Imperial College London.

Lucy Goodchild | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>