Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zinc finger nuclease, immunoprecipitation methods featured in Cold Spring Harbor Protocols

03.08.2010
Zinc finger nucleases (ZFNs) are artificial restriction enzymes made by fusing an engineered zinc finger DNA-binding domain to the DNA cleavage domain of a restriction enzyme.

ZFNs can be used to generate targeted genomic deletions of large segments of DNA in a wide variety of cell types and organisms.

In the August issue of the journal Cold Spring Harbor Protocols (http://cshprotocols.cshlp.org/TOCs/toc8_10.dtl), Jin-Soo Kim and colleagues (http://chem.snu.ac.kr/eng/Faculty/faculty_detail.asp?seqno=1015&link=faculty) present "Analysis of Targeted Chromosomal Deletions Induced by Zinc Finger Nucleases," a detailed protocol for the detection and analysis of large genomic deletions in cultured cells introduced by the expression of ZFNs. The method described allows researchers to detect and estimate the frequency of ZFN-induced genomic deletions by simple PCR-based methods. This featured protocol is freely available on the journal's website (http://cshprotocols.cshlp.org/cgi/content/full/2010/8/pdb.prot5477).

Immunoprecipitation is a commonly used technique for isolating and purifying a protein of interest. An antibody for the protein is incubated with a cell extract, and the resulting antibody/antigen complex is pulled out of solution. The method used for preparation of the cell extract can be critical for the experiment's success. The choice of lysis conditions must be tailored to the nature of the epitope recognized by the immunoprecipitating antibody. "Lysis of Cultured Cells for Immunoprecipitation," featured in the August issue of Cold Spring Harbor Protocols (http://cshprotocols.cshlp.org/TOCs/toc8_10.dtl), provides detailed instructions for the lysis of cells grown as monolayer cultures and cells grown in suspension. The protocol offers a detailed comparison between different commonly used lysis buffers and protease inhibitor cocktails, as well as a guide to preparing a general protease inhibitor cocktail. The article is freely available on the journal's website (http://cshprotocols.cshlp.org/cgi/content/full/2010/8/pdb.prot5466).

... more about:
»DNA »ZFNs »cell type »cold fusion »protease inhibitor »zinc

About Cold Spring Harbor Protocols: Cold Spring Harbor Protocols (www.cshprotocols.org) is a monthly peer-reviewed journal of methods used in a wide range of biology laboratories. It is structured to be highly interactive, with each protocol cross-linked to related methods, descriptive information panels, and illustrative material to maximize the total information available to investigators. Each protocol is clearly presented and designed for easy use at the bench—complete with reagents, equipment, and recipe lists. Life science researchers can access the entire collection via institutional site licenses, and can add their suggestions and comments to further refine the techniques.

About Cold Spring Harbor Laboratory Press: Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. Since 1933, it has furthered the advance and spread of scientific knowledge in all areas of genetics and molecular biology, including cancer biology, plant science, bioinformatics, and neurobiology. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.

David Crotty | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: DNA ZFNs cell type cold fusion protease inhibitor zinc

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>