Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New zeolite material may solve diesel shortage

01.02.2012
World fuel consumption is shifting more and more to diesel at the expense of gasoline.
A recently published article in Nature Chemistry by a research team at Stockholm University and the Polytechnic University of Valencia in Spain presents a new porous material that evinces unique properties for converting gasoline directly into diesel. The material has a tremendously complex atomic structure that could only be determined with the aid of transmission electron microscopy.

The aluminosilicate, which has been named ITQ-39, belongs to the zeolite class and has a porous structure that enables sufficiently small molecules to pass through it. On their way through, they can react with other molecules and create a desired product. The new material has channels of varying size and shape in different directions. These variously shaped channels entail that a molecule that is transported inside the material can be limited in different ways, depending on the direction it travels.

ITQ-39 is the most complex zeolite material ever discovered. Its structure was determined by a research team at Stockholm University headed by Professor Xiaodong Zou, with the help of electron crystallography. On an electron microscope, extremely small crystals can be studied, in this case down to a couple of nanometers. What makes ITQ-39 such a complicated material is that, unlike most other crystalline material, it is not perfectly ordered. The material studied has a type of chaotic order. To be able to understand the material in the smallest detail requires both a model of how the atoms are arranged in the minimal ordered areas and a model of how these domains are then linked together into crystals. This disorder can be studied with the aid of high-resolution images taken with an electron microscope that can then serve as a basis for creating a model of the atomic structure of the material. This is what researchers Tom Willhammar, Junliang Sun, Wan Wei, Peter Oleynikov, Daliang Zhang, and Xiaodong Zou at Stockholm University present in the latest issue of the scientific journal Nature Chemistry.

The material, which was produced by a research team headed by Professor Avelino Corma in the Polytechnic University of Valencia, has proven to be an excellent catalytic converter for turning gasoline into diesel. This is a process that has become ever more important with the marked growth in the demand for diesel in recent years.

The project is funded by the Swedish Research Council, VINNOVA, the Göran Gustafsson Foundation, and the Knut and Alice Wallenberg Foundation.

Title of the article: “Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography” Nature Chemistry 2012 (DOI: 10.1038/NCHEM.1253)

Facts about zeolites:
Zeolite means ‘boiling stone’ in Greek. Zeolite is a collective name for a group of natural and synthetic minerals with an open crystal structure. They mainly consist of aluminum silicate and comprise some 60 naturally occurring minerals and about a hundred synthetic counterparts.

Zeolites contain masses of nanometer-sized pores and channels and can be used as catalytic converters, ion-exchangers, and adsorbents. Because zeolites have so many pores and intersecting channels, they have a huge internal surface area; one gram of a zeolite can have a surface about the size of half a football field.

For more information, please contact: Xiaodong Zou, Department of Materials and Environmental Chemistry, Stockholm University, tel: +46 (0)8-162389 or mobile: +46 (0)762168820, xzou@mmk.su.se

Linnea Bergnéhr | idw
Further information:
http://www.su.se

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>