Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish use sunscreen also for camouflage

30.01.2014
Zebrafish embryos camouflage themselves against predators by adapting to the surface.

Neurobiologists from the University of Zurich have discovered that this camouflage mechanism actually started out as sunscreen to protect the fish against DNA damaging shortwave solar radiation at embryonic stages.


Zebrafish with different pigmentation and camouflage. The bottom animal is on a light subsurface. The top animal is blind, thus incapable of discerning the lightness of the subsurface and

Picture: Stephan Neuhauss / UZH


Camouflage among zebrafish larvae. The left-hand larva is exposed to bright light and has little pigmentation; the right-hand larva against a dark subsurface is more heavily pigmented.

Picture: Stephan Neuhauss / UZH

For diurnal animals like zebrafish embryos, which grow up in shallow pools and are practically see-through, exposure to the sun constitutes a major problem since ultraviolet (UV) radiation damages DNA.

Neurobiologists Stephan Neuhauss and Kaspar Müller from the Institute of Molecular Biology at the University of Zurich set about investigating which mechanisms zebrafish embryos use to protect themselves against the aggressive UV radiation. Interestingly, the two scientists reveal in their article recently published in the journal PLOS ONE, the UV-protection mechanism also doubles as camouflage.

Sunscreen already from day two

For their study, the scientists examined zebrafish embryos, the skin cells of which already possess pigments known as melanosomes from the second day after fertilization – even before their eyes have developed. “In strong solar radiation, the pigments spread along predetermined paths within the cells, after which the zebrafish embryo appears darker,” explains Neuhauss. As the researchers discovered, this distribution process of dark pigments in the presence of intense light always takes place, regardless of whether the embryo is on a light or dark subsurface. Surprisingly, the embryos display a noticeable change from the third day after fertilization: They adapt to the subsurface. According to Neuhauss, this is because the embryos can see from day three and have eyes with UV-sensitive photoreceptors in the retina. From this moment on, they are able to discern whether they are on a light or dark subsurface and can adapt and thus camouflage themselves accordingly. As long as the animal is in the embryonic stage and see-through, however, the benefits of UV protection prevail.

When the skin is no longer transparent and does not require protection against aggressive radiation, the selective distribution of the pigments within the skin cells is predominantly used for camouflage purposes. And with good reason: Being able to adapt to a lighter or darker subsurface and camouflage yourself reduces the chance of being spotted and eaten. “The original UV protection turns into a camouflage mechanism – a striking example of the secondary use of an existing capability,” Neuhauss concludes.

Literature:

Kaspar P. Müller, Stephan C. F. Neuhauss, Sunscreen for Fish: Co-option of UV light protection for camouflage. PLOS ONE. January 29, 2014. Link: http://dx.plos.org/10.1371/journal.pone.0087372

Bettina Jakob | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch/index.html

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>