Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish Regrow Fins Using Multiple Cell Types, Not Identical Stem Cells

18.05.2011
What does it take to regenerate a limb? Biologists have long thought that organ regeneration in animals like zebrafish and salamanders involved stem cells that can generate any tissue in the body. But new research suggests that multiple cell types are needed to regrow the complete organ, at least in zebrafish.

Researchers at Washington University School of Medicine in St. Louis have shown that cells capable of regenerating a zebrafish fin do not revert to stem cells that can form any tissue. Instead, the individual cells retain their original identities and only give rise to more of their own kind.

The findings support a recent shift in how biologists understand organ regeneration in organisms such as salamanders and zebrafish. Understanding regeneration in model organisms gives hope that it may one day be possible for amputees to regrow limbs or for heart attack patients to regrow healthy heart muscle.

“Limb regeneration has long captured people’s imaginations,” says Stephen L. Johnson, PhD, associate professor of genetics at the School of Medicine. “Traditionally, when people have looked at how a limb regenerates, they see a group of cells forming at the amputation site and the cells all look the same. So they’ve imagined that these cells have lost their identities and can become anything else. Our results show that this is not the case in the zebrafish fin. And there is mounting evidence that this is not the case in the salamander limb.”

The study appears online May 16 in Developmental Cell.

When a zebrafish loses its fin, a special group of cells forms on the remaining stump. These cells, which appear identical to one another, regrow the entire limb, complete with all cell types required for a complex organ. This has suggested that these cells may be “pluripotent” stem cells, capable of forming almost every tissue in the body.

To determine if this was indeed the case, Johnson and postdoctoral research associate Shu Tu, PhD, who did this work for her doctoral thesis, used genetic techniques to label individual cells in the stump with a fragment of DNA that makes the cells glow green.

When a cell divides, it copies its DNA so that each daughter cell has a complete set of genetic material. Since Johnson and Tu’s label is inserted into the cell’s DNA, the cells also duplicate the label and pass it on to each daughter cell. By simply observing which cells glow green, Johnson and Tu could track the subsequent daughter cells and determine what cell types they become.

For example, they saw that when they had glowing skin cells in the stump, only skin cells glowed in the regenerated limb. Likewise, when a nerve cell glowed in the stump, only nerve cells glowed in the regenerated limb. In other words, they saw no evidence that a skin cell glowing in the stump could give rise to a nerve cell glowing later in the fin’s development or regeneration.

Using this technique, Johnson and Tu identified nine separate cell lineages present at the end of the stump that contribute to forming the fin’s skin, nerves, pigment, blood vessels, bone and immune cells.

Johnson points out possible implications for future regenerative medicine in humans.

“This is evidence that we can’t necessarily do regenerative medicine by plopping in generalized stem cells,” he says. “The key may be to induce the cells that are already there to grow again. We need to understand and account for every cell lineage and then convince them to play ball together.”

Tu S, Johnson SL. Fate restriction in the growing and regenerating zebrafish fin. Developmental Cell. May 17, 2011.

This work was funded by the National Institutes of Health (NIH).

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>