Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish provide a model for cancerous melanoma in humans

27.05.2009
The pigmented cells in zebrafish help scientists tease out how oncogenes that are know to contribute to cancer, influence the formation and regulation of the aggressive human skin cancer, melanoma

In a new study published in Disease Models & Mechanisms, scientists use the zebrafish to gain insight into the influence of known cancer genes on the development and progression of melanoma, an aggressive form of human skin cancer with limited treatment options.

Inside the cell, signals are delivered that direct the cell on whether to divide, migrate or even die. Cancer often results when the molecules that relay these signals become mutated so that they do not function normally. In cancer, cells divide, grow and migrate when they should not, therefore resulting in an aggressive disease that can spread throughout the body. A key molecule in this signaling pathway is RAS, and mutations in it are known to lead to cancer. In some cases, the type of RAS mutation is a predictor of a patient's response to treatment and their overall prognosis.

Therefore, scientists at the University of Manchester in England and the University Hospital Zürich in Switzerland generated several zebrafish with changes in RAS or other RAS-regulated proteins to create a useful model that can be used to study and understand human melanoma. Zebrafish are a useful tool to understand human disease because they are small, transparent, and easy to propagate and maintain. Tumors created from the pigmented cells of zebrafish, known as melanocytes, are easy to see against their thin, light colored bodies.

The research team notes that these fish may be a useful experimental tool for human disease. Many of the changes they made caused melanoma in the zebrafish, indicating that zebrafish respond similarly to changes in these signals as do humans. Zebrafish that were born from the original mutant fish displayed abnormal growth of their melanocytes, reminiscent of familial atypical mole and melanoma syndrome (FAMM) seen in humans. By producing other signaling molecules in the mutant fish, the researchers were able to identify a pathway that reduced the effects of RAS mutations on melanoma progression in zebrafish.

The report titled "Dissecting the roles of Raf- and PI3K-signalling pathways in melanoma formation and progression in a zebrafish model" was written by Christina Michailidou, Mary Jones, Paul Walker, Amanda Kelly, and Adam Hurlstone at the University of Manchester and Jivko Kamarashev at University Hospital Zürich. The study is published in the July/August issue of the new research journal, Disease Models & Mechanisms (DMM), published by The Company of Biologists, a non-profit based in Cambridge, UK.

About Disease Models & Mechanisms:

Disease Models & Mechanisms (DMM), dmm.biologists.org, is a research journal publishing both primary scientific research, as well as review articles, editorials, and research highlights. The journal's mission is to provide a forum for clinicians and scientists to discuss basic science and clinical research related to human disease, disease detection and novel therapies. DMM is published by the Company of Biologists, a non-profit organization based in Cambridge, UK.

The Company also publishes the international biology research journals Development, Journal of Cell Science, and The Journal of Experimental Biology. In addition to financing these journals, the Company provides grants to scientific societies and supports other activities including travelling fellowships for junior scientists, workshops and conferences. The world's poorest nations receive free and unrestricted access to the Company's journals.

Sarah Sharpe | EurekAlert!
Further information:
http://www.biologists.com

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>