Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish Discovery May Shed Light on Human Kidney Function

21.02.2014
Researchers say the discovery of how sodium ions pass through the gill of a zebrafish may be a clue to understanding a key function in the human kidney.

The findings from a collaboration between Mayo Clinic and the Tokyo Institute of Technology appear in the online issue of the American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

The researchers discovered a protein responsible for gas exchanges in the fish gill structure. Specifically they studied and characterized the Na+/H+ (sodium/hydrogen) exchanger named NHE3, responsible for controlling sodium and hydrogen ions across the gill. The researchers also directly demonstrated that NHE3 can function as a Na+/NH4+ (sodium/ammonium) exchanger.

“This is significant because the fish tends to mimic the process in humans,” says Michael Romero, Ph.D., a Mayo Clinic physiologist who works in nephrology. “This is the true beauty of comparative physiology-– a lot of the organs function by very similar processes, down to ionic transfer.”

In this case the protein allows the sodium ions to be absorbed from the forming urine while at the same time discarding waste from normally functioning cells, thus keeping the body in balance and serving as an energy saving system. The researchers say the same NHE3 protein performs a similar function in the intestine, pancreas, liver, lungs and reproductive system.

The gill is used in the fish as a transport system: sodium ions are nutrients and ammonium carries away waste. It’s a key process allowing zebrafish to extract sodium ions from fresh water. In humans, NHE3 is involved in the acid-waste control system in the kidney, but there hasn’t been a good analysis of that process in humans. Part of this acid-control process in the human kidney is “ammoniagenesis” which requires the initial part of the kidney tubule (proximal tubule) to export ammonia/ammonium. Physiologically, it has been assumed that NHE3 can perform a Na+/NH4+ exchange, but this has never been experimentally demonstrated.

Ammoniagenesis and increased renal sodium bicarbonate absorption are partly under the control of the renin-angiotensin-aldosterone system (RAAS), which means that this work enhances understanding of human hypertension. Researchers say their results in fish can be a clue or starting point for analyzing the process in people. Researchers say they hope to continue their work in other species and ultimately further describe the process in humans.

The research was funded by both institutions. Co-authors include Yusuke Ito, Akira Kato, Ph.D., and Shighisa Hirose, Ph.D., all of the Tokyo Institute of Technology; and Taku Hirata, Ph.D., of Mayo Clinic. Yusuke Ito was a visiting graduate student at Mayo Clinic. Dr. Akira Kato is a visiting research collaborator with Dr. Romero at Mayo Clinic.

About Mayo Clinic
Recognizing 150 years of serving humanity in 2014, Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit 150years.mayoclinic.org, http://www.mayoclinic.org and newsnetwork.mayoclinic.org.
MEDIA CONTACT:
Bob Nellis, Mayo Clinic Public Affairs, 507-284-5005, newsbureau@mayo.edu

Bob Nellis | EurekAlert!
Further information:
http://newsnetwork.mayoclinic.org/discussion/zebrafish-discovery-may-shed-light-on-human-kidney-function

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>