Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebra mussels hang on while quagga mussels take over

16.06.2009
The zebra mussels that have wreaked ecological havoc on the Great Lakes are harder to find these days — not because they are dying off, but because they are being replaced by a cousin, the quagga mussel. But zebra mussels still dominate in fast-moving streams and rivers.

Research conducted by Suzanne Peyer, a doctoral candidate in the University of Wisconsin-Madison Department of Zoology, shows that physiological differences between the two species might determine which mollusk dominates in either calm or fast-moving waters.

"Zebra mussels quite rapidly colonized rivers close to the Great Lakes right after their introduction, within a year or two," Peyer explains. "Quagga mussels were introduced in the Great Lakes around 20 years ago, but they are still not found in the rivers or tend to be present in low numbers."

The mussels are similar in many ways. Their habitats overlap, and both are suspension feeders that filter water to extract their food. But the cousin species are different in many ways, too. Zebra mussels prefer to attach to a hard surface, while quagga mussels can live on soft bottoms, such as sand or silt. Zebra mussels also prefer warmer water temperatures and do not grow as big as quagga mussels.

Peyer's research focused on the ability of the mussels to attach to underlying material. Both species attach to rocks, sand, silt or each other by producing tiny but strong "byssal" threads, string-like strands of protein. These threads act as an adhesive that enable the mussels to attach to surfaces, regardless of how slippery the surface is. Byssal threads are the reason mussels are so difficult to remove from boats or water intake pipes.

Peyer collected both mussel species from Lake Michigan. In the lab, she subjected the mussels to different water velocities that simulated river flow conditions. Her research results supported her hypothesis that zebra mussels are able to produce more byssal threads than quagga mussels, enabling them to attach more securely to underlying material. They are also better able to hang on where water is flowing, such as in a river or stream.

"The results were that zebra mussels produced byssal threads at about twice the rate of quagga mussels," Peyer says. "Zebra mussels can ramp up their byssal thread production under different flows."

A statistical model Peyer developed also predicted that, with increasing velocity, zebra mussels produce more threads than quagga mussels.

According to this model, the zebra mussels show high plasticity, or the ability to adapt to changing environmental conditions. Plasticity can be an adaptive characteristic that allows an organism to survive under new conditions. In this case, the new condition is increased flow.

Zebra mussels are also able to stay attached better. At the highest velocity, only 10 percent of the zebra mussels detached, but 60-70 percent of the quagga mussels detached.

Results from her research, funded by the UW-Madison Sea Grant Institute, is published in the July 1 issue of the Journal of Experimental Biology.

According to Peyer's research adviser, Professor Carol Eunmi Lee at the UW-Madison Center of Rapid Evolution, no one has previously looked at differences in attachment between these species as an explanation for their distribution patterns in North America.

"It's the first time somebody actually went and systematically looked at functional differences between the two species that would explain the different kinds of substrate that they could invade," she says. "In that sense, Suzanne has produced a really elegant and clever study. It has very concrete hypotheses and results."

Zebra mussels were first introduced in the Great Lakes in the late 1980s, hitchhiking their way into North America in the ballast water of ships from the Caspian and Black Seas. Within a few years, zebra mussels had colonized shallow water, beaches, and water intake pipes in layers up to eight inches thick. Although quagga mussels came onto the scene a few years later, they have recently become the dominant species in calm waters of the Great Lakes.

These mussels have permanently changed the ecosystem. Before the mussels invaded, Lake Michigan water was mostly cloudy and millions of tiny microorganisms provided a food base for fish. Because the mussels filter the microorganisms, the waters today are surprisingly clear, allowing light to penetrate to greater depths, which in turn promotes prolific, nuisance algae blooms.

Quagga mussels may be the reason Diporea, a small shrimp-like species that serves as a food source for larger fish, is no longer abundant. The whitefish that feed on Diporea are growing to less than half of their expected size.

Both Peyer and Lee hope that understanding the biological differences between the two mussel species will help those who manage the Great Lakes.

"We need to be aware of the distinct differences between the two species," Peyer says. "If we understand the differences in their biology, we might help to make management more efficient and more effective in the end."

Suzanne Peyer | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>