Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebra mussels hang on while quagga mussels take over

16.06.2009
The zebra mussels that have wreaked ecological havoc on the Great Lakes are harder to find these days — not because they are dying off, but because they are being replaced by a cousin, the quagga mussel. But zebra mussels still dominate in fast-moving streams and rivers.

Research conducted by Suzanne Peyer, a doctoral candidate in the University of Wisconsin-Madison Department of Zoology, shows that physiological differences between the two species might determine which mollusk dominates in either calm or fast-moving waters.

"Zebra mussels quite rapidly colonized rivers close to the Great Lakes right after their introduction, within a year or two," Peyer explains. "Quagga mussels were introduced in the Great Lakes around 20 years ago, but they are still not found in the rivers or tend to be present in low numbers."

The mussels are similar in many ways. Their habitats overlap, and both are suspension feeders that filter water to extract their food. But the cousin species are different in many ways, too. Zebra mussels prefer to attach to a hard surface, while quagga mussels can live on soft bottoms, such as sand or silt. Zebra mussels also prefer warmer water temperatures and do not grow as big as quagga mussels.

Peyer's research focused on the ability of the mussels to attach to underlying material. Both species attach to rocks, sand, silt or each other by producing tiny but strong "byssal" threads, string-like strands of protein. These threads act as an adhesive that enable the mussels to attach to surfaces, regardless of how slippery the surface is. Byssal threads are the reason mussels are so difficult to remove from boats or water intake pipes.

Peyer collected both mussel species from Lake Michigan. In the lab, she subjected the mussels to different water velocities that simulated river flow conditions. Her research results supported her hypothesis that zebra mussels are able to produce more byssal threads than quagga mussels, enabling them to attach more securely to underlying material. They are also better able to hang on where water is flowing, such as in a river or stream.

"The results were that zebra mussels produced byssal threads at about twice the rate of quagga mussels," Peyer says. "Zebra mussels can ramp up their byssal thread production under different flows."

A statistical model Peyer developed also predicted that, with increasing velocity, zebra mussels produce more threads than quagga mussels.

According to this model, the zebra mussels show high plasticity, or the ability to adapt to changing environmental conditions. Plasticity can be an adaptive characteristic that allows an organism to survive under new conditions. In this case, the new condition is increased flow.

Zebra mussels are also able to stay attached better. At the highest velocity, only 10 percent of the zebra mussels detached, but 60-70 percent of the quagga mussels detached.

Results from her research, funded by the UW-Madison Sea Grant Institute, is published in the July 1 issue of the Journal of Experimental Biology.

According to Peyer's research adviser, Professor Carol Eunmi Lee at the UW-Madison Center of Rapid Evolution, no one has previously looked at differences in attachment between these species as an explanation for their distribution patterns in North America.

"It's the first time somebody actually went and systematically looked at functional differences between the two species that would explain the different kinds of substrate that they could invade," she says. "In that sense, Suzanne has produced a really elegant and clever study. It has very concrete hypotheses and results."

Zebra mussels were first introduced in the Great Lakes in the late 1980s, hitchhiking their way into North America in the ballast water of ships from the Caspian and Black Seas. Within a few years, zebra mussels had colonized shallow water, beaches, and water intake pipes in layers up to eight inches thick. Although quagga mussels came onto the scene a few years later, they have recently become the dominant species in calm waters of the Great Lakes.

These mussels have permanently changed the ecosystem. Before the mussels invaded, Lake Michigan water was mostly cloudy and millions of tiny microorganisms provided a food base for fish. Because the mussels filter the microorganisms, the waters today are surprisingly clear, allowing light to penetrate to greater depths, which in turn promotes prolific, nuisance algae blooms.

Quagga mussels may be the reason Diporea, a small shrimp-like species that serves as a food source for larger fish, is no longer abundant. The whitefish that feed on Diporea are growing to less than half of their expected size.

Both Peyer and Lee hope that understanding the biological differences between the two mussel species will help those who manage the Great Lakes.

"We need to be aware of the distinct differences between the two species," Peyer says. "If we understand the differences in their biology, we might help to make management more efficient and more effective in the end."

Suzanne Peyer | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>