Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebra Finch Genome Hints that Smell is Part of Bird Communication

09.04.2010
Darwin’s finches – some 14 related species of songbirds found on the Galapagos and Cocos Islands – will forever be enshrined in history for having planted the seeds of the theory of evolution through natural selection.

Today, 150 years after Darwin’s famous book, finches can still teach us a lesson about evolution. A large, international group of researchers, among them Prof. Doron Lancet and Dr. Tsviya Olender of the Department of Molecular Genetics at the Weizmann Institute of Science, recently produced the full genome of the zebra finch and analyzed it in detail.

The report on the zebra finch genome, which appeared April 6 in Nature, is especially significant for what it reveals about learning processes for language and speech. For Prof. Lancet and Dr. Olender, however, the findings have provided an interesting twist on the evolution of the sense of smell.

Songbirds – like humans and a small number of other animals – are capable of complex, rich communication through sounds. The similarity between birdsong and human language makes birds a useful scientific model for probing how this ability developed, what neuronal mechanisms are required, and which genes encode them. Significantly, the scientific team found that a large percentage of the genes expressed in the finch brain are devoted to vocal communication. They also found that the expression levels of a number of genes, specifically those belonging to the important class of microRNAs, change after the bird is exposed to song. This implies that such genes might be involved in the birds’ ability to learn new tunes.

“The senses are sophisticated means of interacting with the environment, and this is why they are so fascinating. In our lab, we are primarily interested in smell,” says Dr. Olender, who joined the project, along with Prof. Lancet, in order to map the genes encoding smell receptors in the finch. In doing so, the scientists were entering the fray on a long-standing debate over whether odor sensation is active and important for birds. Some positive evidence exists: homing pigeons have been shown to use smell to help them navigate back to their coops. In contrast, a computer-aided analysis of the chicken genome had shown that out of 500 genes encoding smell receptors, a mere 70 produce active proteins. Prof. Lancet and Dr. Olender have now conducted a similar analysis of the zebra finch genome. Their findings revealed that while the finch has the same total number of smell genes as the chicken, it possesses three times as many that are active: around 200 of the finch’s genes can potentially produce functional smell receptors. This figure supports the claim that some birds do rely on the sense of smell.

A comparison of the zebra finch genome to those of other bird species sheds some light on how this sense evolved in the birds: unlike mammals, in which all the different species share most of their smell receptor gene families, 95 percent of the receptors in the finches appeared to belong to families unique to them. In other words, it is possible that each bird species evolved its own array of smell receptors separately, rather than using ones passed down from a common ancestor. Says Prof. Lancet, “This finding suggests that smells may be involved in the unique communications among individuals within the species, on top of the messages they send through their songs.”

Prof. Doron Lancet’s research is supported by the Helen and Martin Kimmel Center for Molecular Design and the Estate of Joe Gurwin. Prof. Lancet is the incumbent of the Ralph and Lois Silver Professorial Chair in Human Genomics.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>