Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebra Finch Genome Hints that Smell is Part of Bird Communication

09.04.2010
Darwin’s finches – some 14 related species of songbirds found on the Galapagos and Cocos Islands – will forever be enshrined in history for having planted the seeds of the theory of evolution through natural selection.

Today, 150 years after Darwin’s famous book, finches can still teach us a lesson about evolution. A large, international group of researchers, among them Prof. Doron Lancet and Dr. Tsviya Olender of the Department of Molecular Genetics at the Weizmann Institute of Science, recently produced the full genome of the zebra finch and analyzed it in detail.

The report on the zebra finch genome, which appeared April 6 in Nature, is especially significant for what it reveals about learning processes for language and speech. For Prof. Lancet and Dr. Olender, however, the findings have provided an interesting twist on the evolution of the sense of smell.

Songbirds – like humans and a small number of other animals – are capable of complex, rich communication through sounds. The similarity between birdsong and human language makes birds a useful scientific model for probing how this ability developed, what neuronal mechanisms are required, and which genes encode them. Significantly, the scientific team found that a large percentage of the genes expressed in the finch brain are devoted to vocal communication. They also found that the expression levels of a number of genes, specifically those belonging to the important class of microRNAs, change after the bird is exposed to song. This implies that such genes might be involved in the birds’ ability to learn new tunes.

“The senses are sophisticated means of interacting with the environment, and this is why they are so fascinating. In our lab, we are primarily interested in smell,” says Dr. Olender, who joined the project, along with Prof. Lancet, in order to map the genes encoding smell receptors in the finch. In doing so, the scientists were entering the fray on a long-standing debate over whether odor sensation is active and important for birds. Some positive evidence exists: homing pigeons have been shown to use smell to help them navigate back to their coops. In contrast, a computer-aided analysis of the chicken genome had shown that out of 500 genes encoding smell receptors, a mere 70 produce active proteins. Prof. Lancet and Dr. Olender have now conducted a similar analysis of the zebra finch genome. Their findings revealed that while the finch has the same total number of smell genes as the chicken, it possesses three times as many that are active: around 200 of the finch’s genes can potentially produce functional smell receptors. This figure supports the claim that some birds do rely on the sense of smell.

A comparison of the zebra finch genome to those of other bird species sheds some light on how this sense evolved in the birds: unlike mammals, in which all the different species share most of their smell receptor gene families, 95 percent of the receptors in the finches appeared to belong to families unique to them. In other words, it is possible that each bird species evolved its own array of smell receptors separately, rather than using ones passed down from a common ancestor. Says Prof. Lancet, “This finding suggests that smells may be involved in the unique communications among individuals within the species, on top of the messages they send through their songs.”

Prof. Doron Lancet’s research is supported by the Helen and Martin Kimmel Center for Molecular Design and the Estate of Joe Gurwin. Prof. Lancet is the incumbent of the Ralph and Lois Silver Professorial Chair in Human Genomics.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>