Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young Salamanders' Movement Over Land Helps Stabilize Populations

31.03.2010
Amphibians—frogs, toads, salamanders, and newts—are disappearing worldwide, but the stream salamanders of the Appalachian Mountains appear to be stable. This region is home to the largest diversity of salamanders in the world (more than 70 species reside here), and scientists want to understand what contributes to the stability of these salamander populations.

In research published in the March 29, 2010 issue of the Proceedings of the National Academy of Sciences, Dr. Evan Grant (a research associate in the University of Maryland Department of Biology and wildlife biologist with the US Geological Survey's Amphibian Research and Monitoring Initiative); along with Dr. William Fagan, University of Maryland Department of Biology; and collaborators James Nichols, US Geological Survey (USGS) Patuxent Wildlife Research Center; and Winsor Lowe, University of Montana; describe how two species of stream salamanders find new homes by moving both within streams and over land to adjacent streams during multiple life stages, and how this movement may help to stabilize their populations.

"Scientists tend to be more focused on populations that are declining or threatened," explains Grant, "but it is also important to look at the populations that are doing well, and to understand what makes the population or species more stable. You can apply this to interpret what might be happening with populations that are declining."

The Fagan lab is known for its expertise in combining math and biology to understand the spatial distribution of species to solve real-world conservation problems. They create mathematical models to understand patterns, influences and changes in spatial distribution.

Evan Grant, who is a wildlife biologist with the USGS Patuxent Wildlife Research Center and completed this work as part of his dissertation research, used observations of marked animals to estimate the dispersal probabilities of two species of lungless salamanders (Desmognathus fuscus and Desmognathus monticola) who reside in headwater streams (these salamanders are known to prefer the headwaters, where the stream originates) in Virginia's Shenandoah National Park.

These salamanders are aquatic as larva (a stage which lasts ~9 months), and then become terrestrial as juveniles, when they reabsorb their gills and begin to breathe by diffusing oxygen through their skin. While the stream is the best habitat for the salamanders because of the stable temperatures and humidity, both juvenile and adult salamanders can travel over land to forage for food, and occasionally move from one stream to another.

Over a two year period, Grant and colleagues captured and marked more than 2500 salamanders in three 40 meter segments along the headwater streams using a harmless injectable dye (known as a "visual implant elastomer"). They then released them and tracked their movements by recapturing them during four return visits each year, recording their location each time. This study was the first to track salamanders across all three life stages - larva, juvenile, and adult - because the research team overcame the difficulty in marking the larval salamanders, which are only a half an inch long. The adult salamanders of these two species grow to a length of almost four inches.

Grant used sophisticated models to estimate the probability of a salamander moving from one segment to another within the same stream either upstream or downstream, and from one stream to another by moving across land. What he found supported his prediction that the salamanders generally prefer to disperse upstream and that those in the juvenile stage were the most likely to change location by moving both upstream and overland to the adjacent stream.

"Marking the larvae was key to figuring out the movement ecology of the species, because once the larva transformed into a juvenile, that is when the dispersal happened," says Grant. "If I hadn't marked the larva and just marked the juveniles, the probability that I would have observed that dispersal would have been very, very slim."

It turns out that this overland movement is very important contributor to population stability. Grant used the observed dispersal probabilities to conduct a computer simulation to show changes in population stability across a range of extinction risk scenarios in the stream networks. He investigated how the combination of dispersal by the three possible movement routes - upstream, downstream, and over land - resulted in changes to predicted extinction times. His modeling showed that when even a small amount of overland movement occurred, it increased the likelihood of salamander population persistence dramatically. This was only the case under low to moderate rates of extinction risk. Under higher extinction probabilities (like we see in stream-breeding frogs in the neotropics), no amount of dispersal could stabilize populations.

These results suggest that the specific routes of dispersal play a big role in salamander population stability, and helps to explain why we have not seen declines in headwater stream salamander populations. This information can help wildlife biologists, amphibian conservationists, and resource managers in their efforts to maintain or restore salamander habitats to facilitate persistence of the species and prevent extinctions. These data confirm that the terrestrial habitat between streams is important to salamanders and must be maintained and protected.

Kelly Blake | EurekAlert!
Further information:
http://www.umd.edu
http://chemlife.umd.edu/news/posts/2053

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>