Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Young Salamanders' Movement Over Land Helps Stabilize Populations

Amphibians—frogs, toads, salamanders, and newts—are disappearing worldwide, but the stream salamanders of the Appalachian Mountains appear to be stable. This region is home to the largest diversity of salamanders in the world (more than 70 species reside here), and scientists want to understand what contributes to the stability of these salamander populations.

In research published in the March 29, 2010 issue of the Proceedings of the National Academy of Sciences, Dr. Evan Grant (a research associate in the University of Maryland Department of Biology and wildlife biologist with the US Geological Survey's Amphibian Research and Monitoring Initiative); along with Dr. William Fagan, University of Maryland Department of Biology; and collaborators James Nichols, US Geological Survey (USGS) Patuxent Wildlife Research Center; and Winsor Lowe, University of Montana; describe how two species of stream salamanders find new homes by moving both within streams and over land to adjacent streams during multiple life stages, and how this movement may help to stabilize their populations.

"Scientists tend to be more focused on populations that are declining or threatened," explains Grant, "but it is also important to look at the populations that are doing well, and to understand what makes the population or species more stable. You can apply this to interpret what might be happening with populations that are declining."

The Fagan lab is known for its expertise in combining math and biology to understand the spatial distribution of species to solve real-world conservation problems. They create mathematical models to understand patterns, influences and changes in spatial distribution.

Evan Grant, who is a wildlife biologist with the USGS Patuxent Wildlife Research Center and completed this work as part of his dissertation research, used observations of marked animals to estimate the dispersal probabilities of two species of lungless salamanders (Desmognathus fuscus and Desmognathus monticola) who reside in headwater streams (these salamanders are known to prefer the headwaters, where the stream originates) in Virginia's Shenandoah National Park.

These salamanders are aquatic as larva (a stage which lasts ~9 months), and then become terrestrial as juveniles, when they reabsorb their gills and begin to breathe by diffusing oxygen through their skin. While the stream is the best habitat for the salamanders because of the stable temperatures and humidity, both juvenile and adult salamanders can travel over land to forage for food, and occasionally move from one stream to another.

Over a two year period, Grant and colleagues captured and marked more than 2500 salamanders in three 40 meter segments along the headwater streams using a harmless injectable dye (known as a "visual implant elastomer"). They then released them and tracked their movements by recapturing them during four return visits each year, recording their location each time. This study was the first to track salamanders across all three life stages - larva, juvenile, and adult - because the research team overcame the difficulty in marking the larval salamanders, which are only a half an inch long. The adult salamanders of these two species grow to a length of almost four inches.

Grant used sophisticated models to estimate the probability of a salamander moving from one segment to another within the same stream either upstream or downstream, and from one stream to another by moving across land. What he found supported his prediction that the salamanders generally prefer to disperse upstream and that those in the juvenile stage were the most likely to change location by moving both upstream and overland to the adjacent stream.

"Marking the larvae was key to figuring out the movement ecology of the species, because once the larva transformed into a juvenile, that is when the dispersal happened," says Grant. "If I hadn't marked the larva and just marked the juveniles, the probability that I would have observed that dispersal would have been very, very slim."

It turns out that this overland movement is very important contributor to population stability. Grant used the observed dispersal probabilities to conduct a computer simulation to show changes in population stability across a range of extinction risk scenarios in the stream networks. He investigated how the combination of dispersal by the three possible movement routes - upstream, downstream, and over land - resulted in changes to predicted extinction times. His modeling showed that when even a small amount of overland movement occurred, it increased the likelihood of salamander population persistence dramatically. This was only the case under low to moderate rates of extinction risk. Under higher extinction probabilities (like we see in stream-breeding frogs in the neotropics), no amount of dispersal could stabilize populations.

These results suggest that the specific routes of dispersal play a big role in salamander population stability, and helps to explain why we have not seen declines in headwater stream salamander populations. This information can help wildlife biologists, amphibian conservationists, and resource managers in their efforts to maintain or restore salamander habitats to facilitate persistence of the species and prevent extinctions. These data confirm that the terrestrial habitat between streams is important to salamanders and must be maintained and protected.

Kelly Blake | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>