Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Young killer cells protect against infectious mononucleosis

19.12.2013
Most people are carriers of the Epstein-Barr Virus, which can trigger infectious mononucleosis. Those who become infected as adults are more at risk of becoming ill from it.

By contrast, children who become infected are protected by their innate immune system. This is because young «natural killer cells» fight off infectious mononucleosis, as immunologists from the University of Zurich have now shown. The researchers are now testing vaccinations that could protect young people from the illness.

More than 90 percent of all adults are carriers of the oncogenic Epstein-Barr Virus (EBV). Primary infection with this herpes virus as a young child is generally not linked to any symptoms, and usually offers life-long protection from its cancer-causing effect. However, for people who do not become infected with the virus until adolescence, the infection often leads to infectious mononucleosis (commonly known as glandular fever). Our immune systems can generally fend off this disease after a period of between one and several months. However, there is an increased risk of developing Hodgkin lymphoma at a later stage, a cancerous tumor of the lymphatic system. Immunologists from the University of Zurich have now discovered a risk factor that is in part responsible for the outbreak of infectious mononucleosis in young people.

Young natural killer cells combat primary infection

The researchers used an animal model to show that the loss of innate immune control by young natural killer cells can lead to infectious mononucleosis. “Young natural killer cells, which small children in particular have in abundance, seem to be especially suited to killing off the cells that multiply EBV”, according to Christian Münz, Professor of Experimental Immunology at the University of Zurich. “This weakens the primary infection and infectious mononucleosis does not break out”.

Without the defense of the natural killer cells, EBV multiplies so dramatically during the primary infection phase that the aggressive response of the adaptive immune system – chiefly of the T killer cells – makes the infected person sick with infectious mononucleosis. “In the animal model we also observed weight loss and the increased occurrence of EBV-associated lymphomas. Consequently, natural killer cells seem to play a key role in the development of the primary infection with Epstein-Barr Virus”. This is how Christian Münz explains the results of the study.

Young people could benefit from a vaccination

Adolescents who are not yet carriers of EBV are at an increased risk of developing infectious mononucleosis. Christian Münz’s work group is currently examining vaccinations that could protect against EBV infection. This could prevent the outbreak of infectious mononucleosis and reduce the related risk of developing Hodgkin lymphoma.

Literature:

Obinna Chijioke, Anne Müller, Regina Feederle, Mario Henrique M. Barros, Carsten Krieg, Vanessa Emmel, Emanuela Marcenaro, Carol S. Leung, Olga Antsiferova, Vanessa Landtwing, Walter Bossart, Alessandro Moretta, Rocio Hassan, Onur Boyman, Gerald Niedobitek, Henri-Jacques Delecluse, Riccarda Capaul and Christian Münz. Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection. Cell Reports. December 19, 2013. Doi: 10.1016/

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>