Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New York University scientists discover possible treatment to reduce scarring

09.07.2012
New research in the FASEB Journal suggests that topical application of an adenosine A2A receptor antagonist will diminish the overall size of a scar and improve the quality of skin within the scar

Whether from surgery or battle wounds, ugly scars can affect body and mind. Now a new research report appearing online in the FASEB Journal offers a new strategy to reduce or eliminate scars on the skin.

Specifically, scientists from NYU describe how agents that block receptors for adenosine (a molecule generated from ATP which is used by the body to provide energy to muscles) can be applied topically to healing wounds to reduce scar size, yielding skin that feels more like the original, unscarred skin.

"Scars can be disfiguring and, if extensive enough, can lead to diminished function and quality of life," said Bruce N. Cronstein, M.D., a researcher involved in the work from the Division of Translational Medicine in the Department of Medicine at New York University School of Medicine in New York, NY. "We hope that our findings may lead to new agents that diminish scarring and disfigurement following burns, wounds, or even illnesses that destroy skin and lead to a better quality of life for victims of these traumas."

When the skin or other tissues are wounded, ATP leaks from the damaged cells and is then converted to adenosine which promotes healing. Scars form when adenosine continues to be produced at the wound site after the injury is healed, leading to larger, thicker scars than what may have otherwise been there. To study the possibility of reducing scar sizes, Cronstein and colleagues studied wounds on the backs of mice. After the wound closed, the adenosine A2A receptor antagonist was applied. They found that the adenosine A2A receptor agonist prevented excessive scar tissue in the treated mice.

"The vast majority of scars are hardly noticeable, if they can be seen at all," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "but for some, scars can severely disfigure not only the body, but the mind. Finding ways to prevent scarring after wounds or surgery has the potential to improve the quality of life for those who suffer the slings and arrows of outrageous fortune, now and for generations to come."

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB) and is among the most cited biology journals worldwide according to the Institute for Scientific Information. In 2010, the journal was recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century. FASEB is composed of 26 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. Celebrating 100 Years of Advancing the Life Sciences in 2012, FASEB is rededicating its efforts to advance health and well-being by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Miguel Perez-Aso, Luis Chiriboga, and Bruce N. Cronstein. Pharmacological blockade of adenosine A2A receptors diminishes scarring. FASEB J doi:10.1096/fj.12-209627 ; http://www.fasebj.org/content/early/2012/07/05/fj.12-209627.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>