Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New York University scientists discover possible treatment to reduce scarring

New research in the FASEB Journal suggests that topical application of an adenosine A2A receptor antagonist will diminish the overall size of a scar and improve the quality of skin within the scar

Whether from surgery or battle wounds, ugly scars can affect body and mind. Now a new research report appearing online in the FASEB Journal offers a new strategy to reduce or eliminate scars on the skin.

Specifically, scientists from NYU describe how agents that block receptors for adenosine (a molecule generated from ATP which is used by the body to provide energy to muscles) can be applied topically to healing wounds to reduce scar size, yielding skin that feels more like the original, unscarred skin.

"Scars can be disfiguring and, if extensive enough, can lead to diminished function and quality of life," said Bruce N. Cronstein, M.D., a researcher involved in the work from the Division of Translational Medicine in the Department of Medicine at New York University School of Medicine in New York, NY. "We hope that our findings may lead to new agents that diminish scarring and disfigurement following burns, wounds, or even illnesses that destroy skin and lead to a better quality of life for victims of these traumas."

When the skin or other tissues are wounded, ATP leaks from the damaged cells and is then converted to adenosine which promotes healing. Scars form when adenosine continues to be produced at the wound site after the injury is healed, leading to larger, thicker scars than what may have otherwise been there. To study the possibility of reducing scar sizes, Cronstein and colleagues studied wounds on the backs of mice. After the wound closed, the adenosine A2A receptor antagonist was applied. They found that the adenosine A2A receptor agonist prevented excessive scar tissue in the treated mice.

"The vast majority of scars are hardly noticeable, if they can be seen at all," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal, "but for some, scars can severely disfigure not only the body, but the mind. Finding ways to prevent scarring after wounds or surgery has the potential to improve the quality of life for those who suffer the slings and arrows of outrageous fortune, now and for generations to come."

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB) and is among the most cited biology journals worldwide according to the Institute for Scientific Information. In 2010, the journal was recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century. FASEB is composed of 26 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. Celebrating 100 Years of Advancing the Life Sciences in 2012, FASEB is rededicating its efforts to advance health and well-being by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Miguel Perez-Aso, Luis Chiriboga, and Bruce N. Cronstein. Pharmacological blockade of adenosine A2A receptors diminishes scarring. FASEB J doi:10.1096/fj.12-209627 ;

Cody Mooneyhan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>