Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New York's Ash Trees Threatened by Newly Found Beetle

22.06.2009
For the first time, Cornell researchers have reported the sighting of the emerald ash borer – an ash-destroying beetle – in New York state.

“The threat is extreme,” said E. Richard Hoebeke, a senior extension associate in entomology at Cornell. “There is the potential for ash as we know it to be extirpated from the landscape.”

The U.S. Department of Agriculture (USDA) Agricultural Research Service (ARS) in Washington, D.C., announced on June 18 they had officially identified the Emerald Ash Borer in New York after receiving and examining specimens sent by Cornell researchers earlier this week.

The flying Asian beetle was discovered in ash trees near Randolph in Cattaraugus County in southwestern New York. New York has some 900 million ash trees, representing about 7 percent of all trees in the state, and all are at risk should this invasive, exotic pest become established.

The beetle, which has metallic green wing covers and a coppery red or purple abdomen and is small enough to fit on a penny – was first discovered in the United States in Michigan in 2002 and has since decimated more than 70 million ash trees in 13 Midwestern states and Pennsylvania, as well as many in southern Ontario and Ottawa in Canada. The beetle’s larvae girdle under a tree’s bark, killing the tree in one to three years.

On June 14, John Vandenberg, a Cornell adjunct professor in entomology, and and Michael Griggs, both entomologists at the USDA-ARS in Ithaca, were driving to Michigan on Route 17 to study the beetle when they stopped to examine some damaged trees along the road. Upon sighting the beetles, which appear to have been in the area for a few years, they contacted Hoebeke, who immediately drove to the site from Ithaca.

Hoebeke collected specimens and overnight mailed them to the USDA-ARS Systematic Entomology Laboratory in Washington, D.C., which then officially identified the emerald ash borer. State and federal agencies now will begin helicopter surveillance of the area and investigate strategies for controlling the invasive pest.

“There’s not a whole lot we’ll be able to do about it,” said Hoebeke. The standard practice of removing infested trees does not effectively stop the ash borers from spreading, he added. Officials plan to survey trees throughout the state and start an intensive effort to trap the ash borers in infested areas to assess the extent and age of the infestation. Information from this survey will help determine the response strategy, which could range from tree removals associated with eradication and safety concerns, to ash product quarantines.

The beetle has most likely spread through the country via the transport of infested firewood, even though most states ban the interstate movement of untreated firewood.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>