Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Of Yeast and Men: An evolutionary tale

07.05.2012
Scientists at the Research Institute of Molecular Pathology in Vienna discover and elucidate the function of conserved cell division proteins in yeast

The adult human body consists of trillions of cells. Cell proliferation is accomplished by means of cell division in which an existing cell serves as the exact blueprint for its progeny. This process follows the same basic principles in all higher organisms. First, the genetic information is precisely copied and subsequently equally distributed between the mother and daughter.


Dividing human cancer cell in Metaphase. The DNA (gray) is attached to the spindle apparatus (pseudocolored). Copyright: IMP/Ladurner

The major task for the dividing cell is to drag two complete sets of chromosomes to the opposite sides of the nucleus, respectively. A logistic challenge accomplished by the interplay of two factors: the spindle apparatus that acts as the molecular motor driving chromosome movements, and the kinetochore that constitutes the physical platform between the DNA and the mitotic spindle.

The attachment site formed by the kinetochore is an intricate protein network. While its components providing the direct contact point for the spindle are very well preserved from yeast to human, evolution of the DNA-binding proteins remained puzzling given that the underlying DNA template is highly variable.

Now, a novel study published in the June edition of Nature Cell Biology sheds light onto the cryptic molecular relationship between the yeast and human kinetochore. Principal investigator Stefan Westermann and his team tracked the missing evolutionary link and opened up new insights into the architecture and function of the key division organelle.

The correct shape pieces the puzzle together

“The clue was to take a close look at the protein sequence as well as specific sequence motifs that get an amino acid chain into its particular shape.” says Stefan Westermann. “In this way, our bioinformatician Alexander Schleiffer was able to predict a number of novel DNA-binding kinetochore proteins and assigned them to the respective human homolog.” Follow-up experiments strongly supported analogous function of the proteins. “Yeast is still an informative model organism and very easy to handle. Our current findings can now direct similar studies in more complex systems. There erroneous chromosome segregation is deleterious for the cell and a common cause of cancer” explains the scientist.

Pull chromosomes together

One of the novel proteins, termed Cnn1, turns out to be of special interest. It connects to the kinetochore molecule Ndc80 that is the major contact point for the spindle apparatus. “This particular interaction is not essential for the initial attachment of the spindle. It rather plays a supporting role that timely overlaps with maximal pulling forces acting on the chromosomes” says Stefan Westermann.
ENDS

The paper “CENP-T proteins are conserved centromere receptors of the Ndc80 complex” by Schleiffer et al. will be published online on Nature Cell Biology's website on 06 May, 2012 (DOI 10.1038/ncb2493).

About the IMP
The IMP is a basic research institute in Vienna, Austria. Its main sponsor is Boehringer Ingelheim International, headquartered in Germany. With over 220 employees from more than 30 different nations, the IMP is a Center of Excellence in the life sciences and the core unit of the Campus Vienna Biocenter. Research at the IMP aims at elucidating the molecular basis of normal development and disease.

Contact:
Dr. Heidemarie Hurtl
IMP Communications
Tel. +43 1 79730-3625
mobile: +43 (0)664 8247910
hurtl@imp.ac.at

Scientific Contact:
Dr. Stefan Westermann
westermann@imp.ac.at

Dr. Heidemarie Hurtl | idw
Further information:
http://www.imp.ac.at

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>