Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New yeast can ferment more sugar, make more cellulosic ethanol

08.06.2010
Purdue University scientists have improved a strain of yeast that can produce more biofuel from cellulosic plant material by fermenting all five types of the plant's sugars.

Nathan Mosier, an associate professor of agricultural and biological engineering; Miroslav Sedlak, a research assistant professor of agricultural and biological engineering; and Nancy Ho, a research professor of chemical engineering, used genes from a fungus to re-engineer a yeast strain Ho developed at Purdue. The new yeast can ferment the sugar arabinose in addition to the other sugars found in plant material such as corn stalks, straw, switchgrass and other crop residues.

"Natural yeast can ferment three sugars: galactose, manose and glucose," Ho said. "The original Ho yeast added xylose to that, and now the fifth, arabinose, has been added."

The addition of new genes to the Ho yeast strain should increase the amount of ethanol that can be produced from cellulosic material. Arabinose makes up about 10 percent of the sugars contained in those plants.

In addition to creating this new arabinose-fermenting yeast, Mosier, Sedlak and Ho also were able to develop strains that are more resistant to acetic acid. Acetic acid, the main ingredient in vinegar, is natural to plants and released with sugars before the fermentation process during ethanol production. Acetic acid gets into yeast cells and slows the fermentation process, adding to the cost of ethanol production.

"It inhibits the microorganism. It doesn't produce as much biofuel, and it produces it more slowly," Mosier said. "If it slows down too much, it's not a good industrial process."

Mosier, Sedlak and Ho compared the genes in the more resistant strains to others to determine which genes made the yeast more resistant to acetic acid. By improving the expression of those genes, they increased the yeast's resistance.

Mosier said arabinose is broken down in the same way as the other four sugars except for the first two steps. Adding the fungus genes allowed the yeast to create necessary enzymes to get through those steps.

"This gave the yeast a new tool set," Sedlak said. "This gives the yeast the tools it needs to get arabinose into the chain."

The team's findings on acetic acid were published in the June issue of the journal FEMS Yeast Research. The findings on arabinose were published in the early online version of the journal Applied Microbiology and Biotechnology.

Mosier, Sedlak and Ho will continue to improve the yeast to make it more efficient during industrial ethanol production and more resistant to inhibitors. The. U.S. Department of Energy funded their research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Nathan Mosier, 765-496-2044, mosiern@purdue.edu
Nancy Ho, 765-494-7046, nwyho@purdue.edu
Miroslav Sedlak, 765-494-3699, sedlak@purdue.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>