Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Old Yeast Cells Send Off Their Daughter Cells without the Baggage of Old Age

28.11.2011
The accumulation of damaged protein is a hallmark of aging that not even the humble baker’s yeast can escape. Yet, aged yeast cells spawn off youthful daughter cells without any of the telltale protein clumps. Now, researchers at the Stowers Institute for Medical Research may have found an explanation for the observed asymmetrical distribution of damaged proteins between mothers and their youthful daughters.

Reporting in the November 23, 2011, issue of Cell the research team, led by Stowers investigator Rong Li, Ph.D., proposes that the limited mobility of clumps of damaged proteins and yeast cells’ geometry—the narrowness of the connection (bud neck) between the mother and the daughter before their separation, in particular—are sufficient to ensure that protein aggregates accumulated during the normal aging process are retained in the mother cell during cell division.


Cell (Nov. 23, 2011)
Image: Courtesy of Chuankai Zhou, Stowers Institute for Medical Research
The movements of protein aggregates found in old yeast cells follow a "random walk" pattern.

“Harmful protein aggregates had recently been thought to be sent back into the mother cell via a directed transport system,” says Li. “Our model suggests that no active shuttle mechanism may be necessary to help with the asymmetric segregation of protein aggregates during yeast cell divisions.”

In the budding yeast Saccharomyces cerevisae—an important model organisms used in aging research—lifespan can be defined by the number of daughter cells a mother has produced, as opposed to by calendar time, a process known as replicative aging. Daughter cells reset their clock and start counting the number of cell division they have undergone from scratch.

The transition from youth to old age is accompanied by metabolic changes and the accumulation of damage as a result of wear and tear. A central question in aging research is the nature of the damage that contributes to aging and how old mother cells avoid passing on these aging determinants to their daughters.

One factor that is known to correlate with replicative age is the buildup of aggregates formed by damaged proteins. “These proteins are preferentially retained by the mother during bud formation and cell division,” explains Li. “A better understanding of replicative aging of a cell population based on asymmetric cell divisions may provide insights into how higher organisms maintain a population of “youthful” stem cells with high proliferative potential during aging.“

To learn more about the movement and fate of damaged proteins in dividing yeast cells, graduate student and first author Chuankai Zhou with help from Amr Eldakak, Ph.D, a postdoctoral research associate in the Li laboratory, added a green fluorescent tag to Hsp104p, a protein known to modify and dissolve protein aggregates by unfolding and refolding proteins. Zhou then used live-cell imaging to record the movements of thousands of protein aggregates induced by heat in three dimensions.

“Most movements were confined within the bud or the mother but we did see a few movements from bud to mother and vice versa,” says Zhou. “Overall though, we couldn’t detect any directionality in the movements of the aggregates.” In order to rigorously characterize the movement of the protein aggregates, Zhou collaborated with Stowers Research advisors Brian Slaughter, Ph.D., and Jay Unruh, Ph.D., and used particle tracking and computational analysis to show that the aggregate movement is best described as ‘random walk’.

Time-lapse movies also revealed that, over time, heat shock-induced aggregates cleared from all buds and their numbers plummeted in mother cells. When Zhou introduced a mutation into Hsp104p that does not affect Hsp104p’s ability to bind to protein aggregates but disrupts its refolding activity, aggregates no longer cleared from neither mother nor daughter cell. “It told us that heat-induced aggregates dissolved with the help of Hsp104p,” explains Zhou.

Zhou then turned his attention to naturally occurring protein aggregates, which are the result of oxidative damage in cells of older replicative age. He found that these protein clumps followed the same random walk pattern but didn’t dissolve over time. However, these aggregates appeared to move within the confines of the mother without escaping into the bud.

With the help of Stowers research advisor Boris Rubinstein, the team used 3D numerical simulations as well as a 1D analytical model to show that the limited, random mobility of the aggregates was sufficient to explain their preferential retention in the mother, and that the narrow opening of the bud neck further helps trapping the aggregates within the mother prior to cell division.

The research was supported primarily by a grant from the National Institute of Health.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over 800 million dollars in pursuit of its mission.

Currently the Institute is home to over 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at www.stowers.org.

Gina Kirchweger | Newswise Science News
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>