Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yawning to cool the brain

07.05.2014

Yawning frequencies of people vary with temperature of the season

Common belief is that yawning helps to increase the oxygen supply. However, previous research has failed to show an association between yawning and blood oxygen levels. New research by a team of researchers led by Psychologist Andrew Gallup of SUNY College at Oneonta, USA now reveals that yawning cools the brain.

Sleep cycles, cortical arousal and stress are all associated with fluctuations in brain temperature, Yawning subsequently functions to keep the brain temperature balanced and in optimal homeostasis. According to this theory, yawning should also be easily manipulated by ambient temperature variation, since exchange with cool ambient air temperature may facilitate lowering brain temperature. Specifically, the researchers hypothesized that yawning should only occur within an optimal range of temperatures, i.e., a thermal window.

To test this, Jorg Massen and Kim Dusch of the University of Vienna measured contagious yawning frequencies of pedestrians outdoors in Vienna, Austria, during both the winter and summer months, and then compared these results to an identical study conducted earlier in arid climate of Arizona, USA. Pedestrians were asked to view a series of images of people yawning, and then they self-reported on their own yawning behavior.

Results showed that in Vienna people yawned more in summer than in winter, whereas in Arizona people yawned more in winter than in summer. It turned out that it was not the seasons themselves, nor the amount of daylight hours experienced, but that contagious yawning was constrained to an optimal thermal zone or range of ambient temperatures around 20o C.

In contrast, contagious yawning diminished when temperatures were relatively high at around 37o C in the summer of Arizona or low and around freezing in the winter of Vienna. Lead author Jorg Massen explains that where yawning functions to cool the brain, yawning is not functional when ambient temperatures are as hot as the body, and may not be necessary or may even have harmful consequences when it is freezing outside.

While most research on contagious yawning emphasizes the influence of interpersonal and emotional-cognitive variables on its expression, this report adds to accumulating research suggesting that the underlying mechanism for yawning, both spontaneous and contagious forms, is involved in regulating brain temperature. In turn, the cooling of the brain functions to improve arousal and mental efficiency. The authors of this study suggest that the spreading of this behavior via contagious yawning could therefore function to enhance overall group vigilance.

###

Publication in "Physiology & Behavior"
Massen, J.J.M., Dusch, K., Eldakar, O.T. & Gallup, A.C. (2014) A thermal window for yawning in humans: Yawning as a Brain Cooling Mechanism.
Physiology & Behavior.
Published online on April 12th.
doi: 10.1016/j.physbeh.2014.03.032.

Scientific contact

Jorg J.M. Massen, PhD
Department of Cognitive Biology
University of Vienna
1090 Vienna, Althanstraße 14
T +43-699-1131 0182
jorg.massen@univie.ac.at

Further inquiries

Mag. Alexandra Frey
Press office, University of Vienna
Research and Teaching
1010 Vienna, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

The University of Vienna, founded in 1365, is one of the oldest and largest universities in Europe. About 9,500 employees, 6,700 of who are academic employees, work at 15 faculties and four centres. This makes the University of Vienna Austria's largest research and education institution. About 92,000 national and international students are currently enrolled at the University of Vienna. With more than 180 degree programmes, the University offers the most diverse range of studies in Austria. The University of Vienna is also a major provider of continuing education. In 2015, the Alma Mater Rudolphina Vindobonensis celebrates its 650th Anniversary. http://www.univie.ac.at

Jorg J.M. Massen, Ph.D. | Eurek Alert!

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>