Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yawning May No Longer be a Wide Open Question

15.11.2011
A new theory proposed by Gary Hack, DDS of the University of Maryland School of Dentistry and Andrew Gallup, PhD of Princeton University suggests that yawning cools the brain, and the sinuses may play a key role.

In the current edition of the journal Medical Hypotheses, Gallup and Hack tackle the question of why humans yawn, and explore the possible function of the human sinuses.

Yawning occurs not because you are tired, bored, or even need oxygen, they argue. Instead, they say, yawning helps to regulate the brain’s temperature. “The brain is exquisitely sensitive to temperature changes and therefore must be protected from overheating,” the authors write. “Brains, like computers, operate best when they are cool”.

The scientists propose that the walls of the human maxillary sinus (pictured in green above) flex during yawning like a bellows, which in turn facilitates brain cooling. The theory helps explain the function of the human sinuses, which is still debated among scientists. In fact, Hack says everything concerning the human sinuses is debated. “Very little is understood about them, and little is agreed upon even by those who investigate them. Some scientists believe that they have no function at all,” he said.

Essentially the authors present a hypothesis, not previously proposed, that the human sinuses play a role in brain cooling that is driven by yawning.

Beyond the physiological curiosity, the brain cooling theory of yawning also has practical medical implications. Bouts of excessive yawning often precede the onset of seizures in epileptic patients, and predict the onset of pain in people with migraine headaches, explains Gallup. Hack and Gallup predict that excessive yawning might be able to be used as a diagnostic tool in identifying dysfunction of temperature regulation. “Excessive yawning appears to be symptomatic of conditions that increase brain and/or core temperature, such as central nervous system damage and sleep deprivation, says Gallup, a postdoctoral research associate at Princeton.

Previously Gallup conducted experiments to test the yawning theory. For example, he implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during, and after yawning. He found that yawning was preceded by rapid increases in brain temperature and followed by corresponding decreases in brain temperature. Gallup also published a case of two women with chronic and debilitating bouts of yawning 5 to 45 minutes in length, occurring as many as 15 times per day. Both women showed signs of dysfunctioning brain temperature regulation. Mirroring the results of the brain temperature study, one woman took oral temperature measurements before and after yawning episodes, which showed a significant drop in temperature. After receiving that information, the woman reported that methods of behavioral brain cooling provided relief and or postponements of her yawning symptoms.

In 2002, Hack presented findings on the potential role of the maxillary sinus in facilitating brain cooling during functional movements of the jaw. He postulated that human jaw musculature may flex the thin walls of that sinus, ventilating the sinus system and aiding in brain cooling.

Hack and Gallup began collaborating last year. They thought the sinus wall flexing may ventilate the human sinuses similar to that process which is known to occur in birds. “Therefore the proposed ventilation process may assist in controlling brain temperature and insuring the maintenance of integrated functions of the brain,” says Hack.

| Newswise Science News
Further information:
http://www.umaryland.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>