Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yawning May No Longer be a Wide Open Question

15.11.2011
A new theory proposed by Gary Hack, DDS of the University of Maryland School of Dentistry and Andrew Gallup, PhD of Princeton University suggests that yawning cools the brain, and the sinuses may play a key role.

In the current edition of the journal Medical Hypotheses, Gallup and Hack tackle the question of why humans yawn, and explore the possible function of the human sinuses.

Yawning occurs not because you are tired, bored, or even need oxygen, they argue. Instead, they say, yawning helps to regulate the brain’s temperature. “The brain is exquisitely sensitive to temperature changes and therefore must be protected from overheating,” the authors write. “Brains, like computers, operate best when they are cool”.

The scientists propose that the walls of the human maxillary sinus (pictured in green above) flex during yawning like a bellows, which in turn facilitates brain cooling. The theory helps explain the function of the human sinuses, which is still debated among scientists. In fact, Hack says everything concerning the human sinuses is debated. “Very little is understood about them, and little is agreed upon even by those who investigate them. Some scientists believe that they have no function at all,” he said.

Essentially the authors present a hypothesis, not previously proposed, that the human sinuses play a role in brain cooling that is driven by yawning.

Beyond the physiological curiosity, the brain cooling theory of yawning also has practical medical implications. Bouts of excessive yawning often precede the onset of seizures in epileptic patients, and predict the onset of pain in people with migraine headaches, explains Gallup. Hack and Gallup predict that excessive yawning might be able to be used as a diagnostic tool in identifying dysfunction of temperature regulation. “Excessive yawning appears to be symptomatic of conditions that increase brain and/or core temperature, such as central nervous system damage and sleep deprivation, says Gallup, a postdoctoral research associate at Princeton.

Previously Gallup conducted experiments to test the yawning theory. For example, he implanted thermocoupled probes in the frontal cortex of rats to measure brain temperature before, during, and after yawning. He found that yawning was preceded by rapid increases in brain temperature and followed by corresponding decreases in brain temperature. Gallup also published a case of two women with chronic and debilitating bouts of yawning 5 to 45 minutes in length, occurring as many as 15 times per day. Both women showed signs of dysfunctioning brain temperature regulation. Mirroring the results of the brain temperature study, one woman took oral temperature measurements before and after yawning episodes, which showed a significant drop in temperature. After receiving that information, the woman reported that methods of behavioral brain cooling provided relief and or postponements of her yawning symptoms.

In 2002, Hack presented findings on the potential role of the maxillary sinus in facilitating brain cooling during functional movements of the jaw. He postulated that human jaw musculature may flex the thin walls of that sinus, ventilating the sinus system and aiding in brain cooling.

Hack and Gallup began collaborating last year. They thought the sinus wall flexing may ventilate the human sinuses similar to that process which is known to occur in birds. “Therefore the proposed ventilation process may assist in controlling brain temperature and insuring the maintenance of integrated functions of the brain,” says Hack.

| Newswise Science News
Further information:
http://www.umaryland.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>