Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale team identifies key to potential new treatment for allergy-induced asthma

20.05.2009
In research that could lead to new asthma drugs, scientists at Yale School of Medicine, Hydra Biosciences of Cambridge, Massachusetts, and the University of California, San Francisco have discovered that a protein may be a trigger of allergy-induced asthma in mice.

They also demonstrated how a drug known to reduce inflammatory and neuropathic pain may also inhibit asthma symptoms in mice. Their paper is published in the May 18-22 online Early Edition of the Proceedings of the National Academy of Sciences.

There has been a dramatic increase in the number of asthma cases reported in recent decades. Scientists know that asthma involves an immune response to inhaled allergens that results in inflammation, mucus secretion and bronchial constriction. But limitations of existing treatments aimed at the immune system suggest that additional physiological mechanisms may be involved in asthmatic inflammation.

The new study tracks the role of the ion channel protein TRPA1. While the exact function of TRPA1 in the airway inflammation of asthma is not completely understood, scientists do know from previous research that this ion channel protein is a sensor for chemical irritants such as cigarette smoke and certain chemicals that also trigger asthma. TRPA1 is found in airway nerves that mediate pain and irritation and trigger coughing and sneezing.

The researchers found that mice with no TRPA1 showed fewer signs of asthma. According to the paper's lead author, Sven-Eric Jordt, Ph.D., assistant professor of pharmacology at Yale School of Medicine, "When compared to normal mice, those lacking the gene for TRPA1 had greatly diminished inflammation, airway mucus and bronchoconstriction."

Furthermore, when the Yale-Hydra team administered a pharmacological agent, HC-030031, that is known to inhibit pain related to TRPA1, to mice with asthma, their symptoms were diminished. "Blocking TRPA1 may prevent the infiltration of the lung by the inflammatory cells responsible for asthma symptoms such as wheezing and mucus overproduction," Jordt explained.

The pharmacological agent observed in this study to diminish asthmatic symptoms in mice was identified by Hydra Biosciences. Yale's Sven-Eric Jordt serves on Hydra's scientific advisory board and receives consulting fees from Hydra. Several other members on the research team are employees of Hydra Biosciences and have a financial interest in the potential development of HC-030031 as a pharmacological treatment.

In addition to Jordt, the team included Ana I. Caceres, Marian Brackmann, Maxwell D. Elia, Bret F. Bessac, Robert J. Homer and Lauren Cohn of Yale; Donato del Camino, Marc D'Amours, JoAnn S. Witek, Christopher M. Fanger, Jayhong A. Chong, Neil J. Hayward and Magdalene M. Moran (corresponding author) of Hydra Biosciences; and Xiaozhu Huang of University of California, San Francisco.

This research was funded by grants from the American Asthma Foundation and the National Institute of Environmental Health Sciences.

Helen Dodson | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>