Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale team identifies key to potential new treatment for allergy-induced asthma

20.05.2009
In research that could lead to new asthma drugs, scientists at Yale School of Medicine, Hydra Biosciences of Cambridge, Massachusetts, and the University of California, San Francisco have discovered that a protein may be a trigger of allergy-induced asthma in mice.

They also demonstrated how a drug known to reduce inflammatory and neuropathic pain may also inhibit asthma symptoms in mice. Their paper is published in the May 18-22 online Early Edition of the Proceedings of the National Academy of Sciences.

There has been a dramatic increase in the number of asthma cases reported in recent decades. Scientists know that asthma involves an immune response to inhaled allergens that results in inflammation, mucus secretion and bronchial constriction. But limitations of existing treatments aimed at the immune system suggest that additional physiological mechanisms may be involved in asthmatic inflammation.

The new study tracks the role of the ion channel protein TRPA1. While the exact function of TRPA1 in the airway inflammation of asthma is not completely understood, scientists do know from previous research that this ion channel protein is a sensor for chemical irritants such as cigarette smoke and certain chemicals that also trigger asthma. TRPA1 is found in airway nerves that mediate pain and irritation and trigger coughing and sneezing.

The researchers found that mice with no TRPA1 showed fewer signs of asthma. According to the paper's lead author, Sven-Eric Jordt, Ph.D., assistant professor of pharmacology at Yale School of Medicine, "When compared to normal mice, those lacking the gene for TRPA1 had greatly diminished inflammation, airway mucus and bronchoconstriction."

Furthermore, when the Yale-Hydra team administered a pharmacological agent, HC-030031, that is known to inhibit pain related to TRPA1, to mice with asthma, their symptoms were diminished. "Blocking TRPA1 may prevent the infiltration of the lung by the inflammatory cells responsible for asthma symptoms such as wheezing and mucus overproduction," Jordt explained.

The pharmacological agent observed in this study to diminish asthmatic symptoms in mice was identified by Hydra Biosciences. Yale's Sven-Eric Jordt serves on Hydra's scientific advisory board and receives consulting fees from Hydra. Several other members on the research team are employees of Hydra Biosciences and have a financial interest in the potential development of HC-030031 as a pharmacological treatment.

In addition to Jordt, the team included Ana I. Caceres, Marian Brackmann, Maxwell D. Elia, Bret F. Bessac, Robert J. Homer and Lauren Cohn of Yale; Donato del Camino, Marc D'Amours, JoAnn S. Witek, Christopher M. Fanger, Jayhong A. Chong, Neil J. Hayward and Magdalene M. Moran (corresponding author) of Hydra Biosciences; and Xiaozhu Huang of University of California, San Francisco.

This research was funded by grants from the American Asthma Foundation and the National Institute of Environmental Health Sciences.

Helen Dodson | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>