Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale team finds mechanism that constructs key brain structure

18.09.2009
Yale University researchers have found a molecular mechanism that allows the proper mixing of neurons during the formation of columns essential for the operation of the cerebral cortex, they report in the Sept. 16 online issue of the journal Nature.

Scientists have known for years that information processing in the cerebral cortex depends upon groupings of neurons that assemble in the shape of vertical columns. If the number and mix of neurons in the column are wrong, severe cognitive problems can result. For instance, malformations of these columns have been implicated in some forms of autism and mental retardation. Scientists, however, have not been able to find the molecular mechanism responsible for this intermixing.

In the Nature paper, a team led by Pasko Rakic, professor and chairman of the Department of Neurobiology and head of the Kavli Institute for Neuroscience, describes one of the molecular mechanisms essential to the organizations of these key structures.

Using the most advanced molecular technology, the Yale team showed that during neuronal migration, the intermixing of neurons within column depends on the expression levels of two genes - A-type Eph receptor and ephrin-As, a ligand, or molecule that binds to the receptor. Neuronal cells failed to move laterally into proper columns in mice lacking the ligands or receptors, the team reported.

Masaaki Torii, the first author of the paper, said he was surprised to find that the tiny lateral shift of migrating neurons controlled by these molecules plays such a pivotal role in the normal cortical development.

"This so far unrecognized mechanism for lateral neuronal dispersion seems to be essential for the proper intermixing of neuronal types in the cortical columns, which, when disrupted, might contribute to neuropsychiatric disorders " said Rakic.

Kazue Hashimoto-Torii of Yale as also an author of the paper.

The research was funded by the National Institutes of Health and the Kavli Institute for Neuroscience at Yale.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>