Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale team finds mechanism that constructs key brain structure

18.09.2009
Yale University researchers have found a molecular mechanism that allows the proper mixing of neurons during the formation of columns essential for the operation of the cerebral cortex, they report in the Sept. 16 online issue of the journal Nature.

Scientists have known for years that information processing in the cerebral cortex depends upon groupings of neurons that assemble in the shape of vertical columns. If the number and mix of neurons in the column are wrong, severe cognitive problems can result. For instance, malformations of these columns have been implicated in some forms of autism and mental retardation. Scientists, however, have not been able to find the molecular mechanism responsible for this intermixing.

In the Nature paper, a team led by Pasko Rakic, professor and chairman of the Department of Neurobiology and head of the Kavli Institute for Neuroscience, describes one of the molecular mechanisms essential to the organizations of these key structures.

Using the most advanced molecular technology, the Yale team showed that during neuronal migration, the intermixing of neurons within column depends on the expression levels of two genes - A-type Eph receptor and ephrin-As, a ligand, or molecule that binds to the receptor. Neuronal cells failed to move laterally into proper columns in mice lacking the ligands or receptors, the team reported.

Masaaki Torii, the first author of the paper, said he was surprised to find that the tiny lateral shift of migrating neurons controlled by these molecules plays such a pivotal role in the normal cortical development.

"This so far unrecognized mechanism for lateral neuronal dispersion seems to be essential for the proper intermixing of neuronal types in the cortical columns, which, when disrupted, might contribute to neuropsychiatric disorders " said Rakic.

Kazue Hashimoto-Torii of Yale as also an author of the paper.

The research was funded by the National Institutes of Health and the Kavli Institute for Neuroscience at Yale.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>