Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers find key to keeping cells in shape

10.08.2009
Yale University researchers have discovered how a protein within most cell membranes helps maintain normal cell size, a breakthrough in basic biology that has implications for a variety of diseases such as sickle cell anemia and disorders of the nervous system.

Cell size is regulated by the balance of positively and negatively charged ions and other solutes in the fluid inside and outside cells, which in turn prevents water from moving across cell membranes and changing cell size. Changes in chemical composition of extracellular fluid can disrupt this balance, sometimes with damaging consequences to health.

"If you eat a bag of salty potato chips or a jug of water, the cells lining your stomach will be under pressure to shrink or expand," explains Richard Lifton, senior author of the paper and Sterling Professor of Genetics and Internal Medicine. "Cells need to rapidly change their ionic composition to compensate and avoid blowing up like balloons or shrinking like raisins, and they do this by almost instantly changing their chloride levels."

In the Aug. 7 issue of the journal Cell, a team of Yale scientists led by Jesse Rinehart, associate research scientist in genetics and Lifton, an investigator of the Howard Hughes Medical Institute, report they used innovative new quantitative proteomics technologies to identify two key regulatory transporter sites that control the exit of potassium and chloride out of cells.

The proteomics technologies allow scientists to observe specific sites on proteins that undergo phosphorylation. Phosphorylation is a common and reversible modification made to a protein after it is synthesized and can turn a protein's function on or off. The Yale scientists show that the regulatory sites they identified are almost completely phosphorylated under normal conditions, when the transporter is inactive. When confronted with changes in the environment that challenge the cell, the proteins are rapidly dephosphorylated and dramatically increase transport activity.

"These transporters are overactive in sickle cell anemia and play a role in the dehydration of sickle cells," said Patrick Gallagher, professor of pediatrics at the Yale School of Medicine and a co-author of the study. "With this new information, we may be able to find new strategies to manipulate this activity and identify new treatments that are so urgently needed."

Gallagher's lab is already studying genetic variations in the potassium-chloride pathway in a search of new drug targets.

This same system also helps regulate how brain cells respond to the neurotransmitter GABA, which governs wakefulness and has been implicated in anxiety and other disorders, Lifton said. The investigators found that phosphorylation of the regulatory sites worked the same way in the brain.

Looking to the future, Rinehart speculated that application of these new technologies will prove to be relevant to understanding many other biological regulatory systems.

The study was funded by the National Institutes of Health and the Leducq Foundation.

Other Yale authors of the research were Yelena D. Maksimova, Jessica E. Tanis, Kathryn L. Stone, Caleb A. Hodson, Junhui Zhang, Weijun Pan, Dianqing Wu, Christopher M. Colangelo, Biff Forbush, Erol E. Gulcicek

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

Further reports about: Lifton Medicine brain cell cell death cell membrane genetic variation

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>