Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers find 'junk DNA' may have triggered

08.09.2008
Out of the 3 billion genetic letters that spell out the human genome, Yale scientists have found a handful that may have contributed to the evolutionary changes in human limbs that enabled us to manipulate tools and walk upright.

Results from a comparative analysis of the human, chimpanzee, rhesus macaque and other genomes reported in the journal Science suggest our evolution may have been driven not only by sequence changes in genes, but by changes in areas of the genome once thought of as "junk DNA."

Those changes activated genes in primordial thumb and big toe in a developing mouse embryo, the researchers found.

"Our study identifies a potential genetic contributor to fundamental morphological differences between humans and apes," said James Noonan, Assistant Professor of Genetics in the Yale University School of Medicine and the senior author of the study.

Researchers have long suspected changes in gene expression contributed to human evolution, but this had been difficult to study until recently because most of the sequences that control genes had not been identified. In the last several years, scientists have discovered that non-coding regions of the genome, far from being junk, contain thousands of regulatory elements that act as genetic "switches" to turn genes on or off.

An indication of their biological importance, many of these non-coding sequences have remained similar, or "conserved," even across distantly related vertebrate species such as chickens and humans. Recent functional studies suggest some of these "conserved non-coding sequences" control the genes that direct human development.

In collaboration with scientists at Lawrence Berkeley National Laboratory in California, the Genome Institute of Singapore, and the Medical Research Council in the United Kingdom, Noonan searched the vast non-coding regions of the human genome to identify gene regulatory sequences whose function may have changed during the evolution of humans from our ape-like ancestors.

Noonan and his colleagues looked for sequences with more base pairs in humans than in other primates. The most rapidly evolving sequence they identified, termed HACNS1, is highly conserved among vertebrate species but has accumulated variations in 16 base pairs since the divergence of humans and chimpanzees some 6 million years ago. This was especially surprising, as the human and chimpanzee genomes are extremely similar overall, Noonan said.

Using mouse embryos, Noonan and his collaborators examined how HACNS1 and its related sequences in chimpanzee and rhesus monkey regulated gene expression during development. The human sequence activated genes in the developing mouse limbs, in contrast to the chimpanzee and rhesus sequences. Most intriguing for human evolution, the human sequence drove expression at the base of the primordial thumb in the forelimb and the great toe in the hind limb. The results provided tantalizing, but researchers say preliminary, evidence that the functional changes in HACNS1 may have contributed to adaptations in the human ankle, foot, thumb and wrist-- critical advantages that underlie the evolutionary success of our species.

However, Noonan stressed that it is still unknown whether HACNS1 causes changes in gene expression in human limb development or whether HACNS1 would create human-like limb development if introduced directly into the genome of a mouse.

"The long-term goal is to find many sequences like this and use the mouse to model their effects on the evolution of human development," Noonan said.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>