Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale researchers find 'junk DNA' may have triggered

08.09.2008
Out of the 3 billion genetic letters that spell out the human genome, Yale scientists have found a handful that may have contributed to the evolutionary changes in human limbs that enabled us to manipulate tools and walk upright.

Results from a comparative analysis of the human, chimpanzee, rhesus macaque and other genomes reported in the journal Science suggest our evolution may have been driven not only by sequence changes in genes, but by changes in areas of the genome once thought of as "junk DNA."

Those changes activated genes in primordial thumb and big toe in a developing mouse embryo, the researchers found.

"Our study identifies a potential genetic contributor to fundamental morphological differences between humans and apes," said James Noonan, Assistant Professor of Genetics in the Yale University School of Medicine and the senior author of the study.

Researchers have long suspected changes in gene expression contributed to human evolution, but this had been difficult to study until recently because most of the sequences that control genes had not been identified. In the last several years, scientists have discovered that non-coding regions of the genome, far from being junk, contain thousands of regulatory elements that act as genetic "switches" to turn genes on or off.

An indication of their biological importance, many of these non-coding sequences have remained similar, or "conserved," even across distantly related vertebrate species such as chickens and humans. Recent functional studies suggest some of these "conserved non-coding sequences" control the genes that direct human development.

In collaboration with scientists at Lawrence Berkeley National Laboratory in California, the Genome Institute of Singapore, and the Medical Research Council in the United Kingdom, Noonan searched the vast non-coding regions of the human genome to identify gene regulatory sequences whose function may have changed during the evolution of humans from our ape-like ancestors.

Noonan and his colleagues looked for sequences with more base pairs in humans than in other primates. The most rapidly evolving sequence they identified, termed HACNS1, is highly conserved among vertebrate species but has accumulated variations in 16 base pairs since the divergence of humans and chimpanzees some 6 million years ago. This was especially surprising, as the human and chimpanzee genomes are extremely similar overall, Noonan said.

Using mouse embryos, Noonan and his collaborators examined how HACNS1 and its related sequences in chimpanzee and rhesus monkey regulated gene expression during development. The human sequence activated genes in the developing mouse limbs, in contrast to the chimpanzee and rhesus sequences. Most intriguing for human evolution, the human sequence drove expression at the base of the primordial thumb in the forelimb and the great toe in the hind limb. The results provided tantalizing, but researchers say preliminary, evidence that the functional changes in HACNS1 may have contributed to adaptations in the human ankle, foot, thumb and wrist-- critical advantages that underlie the evolutionary success of our species.

However, Noonan stressed that it is still unknown whether HACNS1 causes changes in gene expression in human limb development or whether HACNS1 would create human-like limb development if introduced directly into the genome of a mouse.

"The long-term goal is to find many sequences like this and use the mouse to model their effects on the evolution of human development," Noonan said.

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>