Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Xie Lab uncovers molecular machinery related to stem cell fate

30.06.2009
The Stowers Institute's Xie Lab has revealed how the BAM protein affects germline stem cell differentiation and how it is involved in regulating the quality of stem cells through intercellular competition. The work was published today by PNAS Early Edition.

Maintaining the proper balance between stem cell self-renewal and differentiation is critical for normal homeostasis. An imbalance between the two can lead to tissue degeneration and to the development of tumors. It has long been known that the BAM protein is necessary for germline stem cell differentiation, but the specific molecular mechanism underlying BAM function had remained a mystery until now.

Examining the fruit fly ovary, the Xie Lab established that BAM controls stem cell differentiation and competition by interfering with the function of the protein translation initiation factor eIF4A. EIF4A and BAM antagonize each other to regulate the balance between self-renewal and differentiation by promoting proper expression of E-cadherin — a molecule crucial to the stem cell's ability to attach to its microenvironment (its niche).

"Our studies contribute to the understanding of stem cell fate control," said Run Shen, Ph.D., Postdoctoral Research Associate in the Xie Lab and lead author on the paper. "Many protein translation initiation factors have been reported to be unregulated in different human cancer tissues, so our study may help to understand how translational initiation factors participate in stem cell misregulation and the development of tumors."

"Our studies have established the role of BAM as a protein translational repressor using biochemical and genetic tests," said Ting Xie, Ph.D., Investigator and senior author on the paper. "Translational control is very important in regulating gene expression. Many genes critical for stem cell development in the fruit fly germline are suggested to be translational regulators, but their exact roles have not been carefully studied. The knowledge generated by this work and the tests we have developed give us great advantage in tackling many additional questions."

Ting Xie, Ph.D., Investigator, also is a Professor in the Department of Anatomy & Cell Biology at The University of Kansas School of Medicine. Learn more about his work at www.stowers.org/labs/XieLab.asp.

About the Stowers Institute

Housed in a 600,000 square-foot state-of-the-art facility on a 10-acre campus in the heart of Kansas City, Missouri, the Stowers Institute for Medical Research conducts basic research on fundamental processes of cellular life. Through its commitment to collaborative research and the use of cutting-edge technology, the Institute seeks more effective means of preventing, treating, and curing disease. Jim and Virginia Stowers endowed the Institute with gifts totaling $2 billion. The endowment resides in a large cash reserve and in substantial ownership of American Century Investments, a privately held mutual fund company that represents exceptional value for the Institute's future.

Marie Jennings | EurekAlert!
Further information:
http://www.stowers.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>