Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Xenotransplantation – no replication of porcine endogenous retroviruses in human cell culture

27.01.2014
Transplantations of animal cells, tissues, or organs to humans (xenotransplantion) could in future solve the problem of short organ supply.

It must, however, be guaranteed that no pathogenic agents from animals are transmitted to the human body. Researchers at the Paul-Ehrlich-Institut have now been able to prove that although porcine endogenous retroviruses (PERV) can penetrate human blood cells under certain circumstances, they cannot replicate at these sites.


TEM-Photo: Porcine endogenous retrovirus (PERV). Green: infected cell cytoplasma; pink: so-called clathrin-coated pit; yellow: virus particle; red: virus core; blue: genetic material of the virus

Source: Dr. Klaus Boller, Paul-Ehrlich-Institut

In connection with screening methods, the aim is to minimize the risk of transmission of PERV by the xenotransplant. The journal Xenotransplantation reports on the results of these research activities in its latest online edition.

Patients often have to face long waiting periods before they can receive an organ suitable for transplantation. This has not only been a problem since the transplantation scandal of last year. Pigs have been the subject of research as a possible organ donor for a long time. First clinical trials using insulin producing cells of the porcine pancreas in patients with type-1 diabetes are already underway in New Zealand and Argentina. Transplantations of whole animal organs such as porcine hearts or kidneys are also thinkable as a medium-term solution and are studied extensively. However, a transplantation of organs from other species to humans presents the risk that endogenous retroviruses, which form an integral part of the genome of the donor animals, will be transmitted in the form of replication-competent virus particles thus causing infections. Porcine endogenous retroviruses (PERV) present in pigs are closely related to retroviruses, which can cause leukaemia in mice, cats, or gibbons. It is therefore assumed that PERV can also cause such diseases after transmission to humans.

A research team of Professor Ralf R. Tönjes, head of the section "Non-vital Tissue Preparations, Xenogeneic Cell Therapeutics" of the Division "Medical Biotechnology" at the Paul-Ehrlich-Institut has investigated whether PERV can really infect human blood cells [1]. Although the investigators at the PEI performed their experiments in vitro, they created conditions as close as possible to the situation of a xenotransplantation to study the real risk of a PERV infection. The porcine cells were co-cultured with human lymphocytes over a period of one month – the human cells and the animal cells were separated from each other only by a membrane permeable for viruses. The researchers established that the PERV could pass the membrane and penetrate the human lymphocytes to a lesser extent. The viral DNA was then identified in these lymphocytes. However, this DNA was not functional, i.e. the genetic information could not be used by the cells to produce new intact virus particles. Productive infection involving the development of new infectious PERV was indeed not observed.

Besides, before xenotransplantations, safety experts have expressed that they require a two-step analysis of the transplant for transmissible PERV involving genetic screening and an assay with a highly sensitive human cell line. This test must be able to show that no functional PERV is present.

"Being a federal institute responsible for the authorisation of clinical trials on xenogeneic cell therapeutics, we require steps from the manufacturers and users which keep the risk of transmission of pathogenic agents during xenotransplantations to a minimum. Our experiments, which use the best screening methods currently available, indicate that no infectivity to human blood cells by PERV causing a disease would occur during xenotransplantations", as Professor Tönjes explained when discussing the research results. Even if transmission of PERV occurred, human blood cells are equipped with cellular protective mechanisms against these viruses and would counteract them in the various phases of the replication cycle [2].

Professor Tönjes and his co-workers are part of the special research group (Sonderforschungsbereich, SFB /Transregio 127) "Biologie der xenogenen Zell- und Organtransplantation – vom Labor in die Klinik" (Biology of xenogeneic cell, tissue and organ transplantation – from bench to bedside) with 16 sub-groups in Berlin, Dresden, Hannover, Langen and München. This research group is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation).

Original publication:
Rodrigues Costa M, Fischer N, Gulich B, Tönjes RR (2014): Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures.

Xenotransplantation Jan 21 [Epub ahead of print]. DOI: 10.1111/xen.12081

Literature:
[1] Specke V et al.: Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology. 2001;285(2):177-180

[2] Denner J, Tönjes RR. Infection Barriers to Successful Xenotransplantation Focusing on Porcine Endogenous Retroviruses. Clinical Microbiology Reviews 2012;25(2):318-343

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, in Langen near Frankfurt/Main is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects.

Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute.

The Paul-Ehrlich-Institut, with its roughly 800 members of staff, also has advisory functions nationally (federal government, federal states (Länder)), and internationally (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1111/xen.12081/abstract Original Publication, Abstract

http://www.pei.de/EN/information/journalists-press/press-releases/2014/01-xenotransplantation-no-replication-porcine-endogenous-retroviruses.html

Press Release on the Paul-Ehrlich-Institut Website

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>