Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


X-ray Protein Probe Leads to Potential Anticancer Tactic

Researchers at Emory University School of Medicine have identified a new type of potential anticancer drug. The compound, named FOBISIN, targets 14-3-3 proteins, important for the runaway growth of cancer cells.

The researchers were using X-rays to see how FOBISIN fits into the clamp-shaped 14-3-3 protein structure. Unexpectedly, the X-rays induced the compound to be permanently bonded to the protein. The finding suggests that compounds like FOBISIN can be used in combination with radiation to trigger potent anticancer activity.

The results were published online Sept. 9 in Proceedings of the National Academy of Sciences Early Edition.

Senior author Haian Fu, PhD, has been studying 14-3-3 proteins for two decades. He is professor of pharmacology and of hematology and oncology at Emory University School of Medicine, and the director of the Emory Chemical Biology Discovery Center.

“Targeting 14-3-3 proteins could be especially valuable because they can impact multiple pathways critical for cancer cell growth,” he says. “14-3-3 proteins have been shown to be dysregulated in a number of cancer types, including lung cancer and breast cancer.”

14-3-3 proteins act as adaptors that clamp onto other proteins. Fu and co-workers Jing Zhao, postdoctoral fellow, and Yuhong Du, assistant professor and associate director of the Discovery Center, sorted through thousands of chemicals to find one (FOBISIN: Fourteen-three-three Binding Small molecule Inhibitor) that prevents 14-3-3 from interacting with its partners. 14-3-3 proteins are found in mammals, plants and fungi. In humans, they come in seven varieties, and FOBISIN appears to inhibit interactions by all seven.

A 14-3-3 proteins’ ability to clamp depends on whether the target protein is phosphorylated, a chemical modification that regulates protein function. FOBISIN’s inhibitory power also requires the presence of phosphorylation in the molecule.

Fu’s group teamed up with the laboratory of Xiaodong Cheng, PhD, co-senior author, professor of biochemistry and a Georgia Research Alliance Eminent Scholar, to examine how FOBISIN fits into its targets.

Scientists use X-rays as a tool to probe protein structure. If a protein and a drug that targets it can be crystallized together, the X-ray diffraction pattern from the crystals reveals the 3D arrangement of the atoms and how the drug interacts with the protein. Research assistant professor John Horton, PhD, and research associate Anup Upadhyay, PhD, in the Cheng laboratory used synchrotron X-ray radiation from the Advanced Photon Source at Argonne National Laboratory for this purpose.

“In this case, the X-rays had an unexpected effect: they caused FOBISIN to become covalently attached to the 14-3-3 protein,” Cheng says.

The finding suggests that compounds like FOBISIN could be developed as “pro-drugs” that upon exposure to radiation, permanently stick to and inhibit their targets. A common strategy in fighting cancer is to combine drugs and radiation so that the drugs increase cells’ sensitivity to radiation. Here, the radiation would activate the drug.

“These compounds could be used in combination with other strategies to enhance the tumor selectivity of the treatment,” Fu says.

The research was funded by the U.S. National Institutes of Health, the Georgia Cancer Coalition, and the Georgia Research Alliance.
J. Zhao, Y. Du, J.R. Horton, A.K. Upadhyay, B. Lou, Y. Bai, X. Zhang, L. Du, M. Li, B. Wang, L. Zhang, J.T. Barbieri, F.R. Khuri, X. Cheng and H. Fu. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. PNAS Early Edition (2011).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory’s health sciences:
Twitter: @emoryhealthsci

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>