Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray Protein Probe Leads to Potential Anticancer Tactic

13.09.2011
Researchers at Emory University School of Medicine have identified a new type of potential anticancer drug. The compound, named FOBISIN, targets 14-3-3 proteins, important for the runaway growth of cancer cells.

The researchers were using X-rays to see how FOBISIN fits into the clamp-shaped 14-3-3 protein structure. Unexpectedly, the X-rays induced the compound to be permanently bonded to the protein. The finding suggests that compounds like FOBISIN can be used in combination with radiation to trigger potent anticancer activity.

The results were published online Sept. 9 in Proceedings of the National Academy of Sciences Early Edition.

Senior author Haian Fu, PhD, has been studying 14-3-3 proteins for two decades. He is professor of pharmacology and of hematology and oncology at Emory University School of Medicine, and the director of the Emory Chemical Biology Discovery Center.

“Targeting 14-3-3 proteins could be especially valuable because they can impact multiple pathways critical for cancer cell growth,” he says. “14-3-3 proteins have been shown to be dysregulated in a number of cancer types, including lung cancer and breast cancer.”

14-3-3 proteins act as adaptors that clamp onto other proteins. Fu and co-workers Jing Zhao, postdoctoral fellow, and Yuhong Du, assistant professor and associate director of the Discovery Center, sorted through thousands of chemicals to find one (FOBISIN: Fourteen-three-three Binding Small molecule Inhibitor) that prevents 14-3-3 from interacting with its partners. 14-3-3 proteins are found in mammals, plants and fungi. In humans, they come in seven varieties, and FOBISIN appears to inhibit interactions by all seven.

A 14-3-3 proteins’ ability to clamp depends on whether the target protein is phosphorylated, a chemical modification that regulates protein function. FOBISIN’s inhibitory power also requires the presence of phosphorylation in the molecule.

Fu’s group teamed up with the laboratory of Xiaodong Cheng, PhD, co-senior author, professor of biochemistry and a Georgia Research Alliance Eminent Scholar, to examine how FOBISIN fits into its targets.

Scientists use X-rays as a tool to probe protein structure. If a protein and a drug that targets it can be crystallized together, the X-ray diffraction pattern from the crystals reveals the 3D arrangement of the atoms and how the drug interacts with the protein. Research assistant professor John Horton, PhD, and research associate Anup Upadhyay, PhD, in the Cheng laboratory used synchrotron X-ray radiation from the Advanced Photon Source at Argonne National Laboratory for this purpose.

“In this case, the X-rays had an unexpected effect: they caused FOBISIN to become covalently attached to the 14-3-3 protein,” Cheng says.

The finding suggests that compounds like FOBISIN could be developed as “pro-drugs” that upon exposure to radiation, permanently stick to and inhibit their targets. A common strategy in fighting cancer is to combine drugs and radiation so that the drugs increase cells’ sensitivity to radiation. Here, the radiation would activate the drug.

“These compounds could be used in combination with other strategies to enhance the tumor selectivity of the treatment,” Fu says.

The research was funded by the U.S. National Institutes of Health, the Georgia Cancer Coalition, and the Georgia Research Alliance.
Reference:
J. Zhao, Y. Du, J.R. Horton, A.K. Upadhyay, B. Lou, Y. Bai, X. Zhang, L. Du, M. Li, B. Wang, L. Zhang, J.T. Barbieri, F.R. Khuri, X. Cheng and H. Fu. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor. PNAS Early Edition (2011).

Writer: Quinn Eastman

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service.

Learn more about Emory’s health sciences:
Blog: http://emoryhealthblog.com
Twitter: @emoryhealthsci
Web: http://emoryhealthsciences.org

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>