Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X-ray laser helps slay parasite that causes sleeping sickness

06.12.2012
An international team of scientists, using the world’s most powerful X-ray laser, has revealed the three dimensional structure of a key enzyme that enables the single-celled parasite that causes African trypanosomiasis (or sleeping sickness) in humans.
With the elucidation of the 3D structure of the cathepsin B enzyme, it will be possible to design new drugs to inhibit the parasite (Trypanosoma brucei) that causes sleeping sickness, leaving the infected human unharmed.

The research team, including several ASU scientists, is led by the German Electron Synchrotron (DESY) scientist Henry Chapman from the Center of Free-Electron Laser Science (CFEL), professor Christian Betzel from the University of Hamburg and Lars Redecke from the SIAS joint Junior Research Group at the Universities of Hamburg and Lübeck. They report their findings this week in Science.

"This is the first new biological structure solved with a free-electron laser," said Chapman of the development.

"These images of an enzyme, which is a drug target for sleeping sickness, are the first results from our new ‘diffract-then-destroy’ snapshot X-ray laser method to show new biological structures which have not been seen before,” explained John Spence, ASU Regents’ Professor of Physics. “The work was led by the DESY group and used the Linac Coherent Light Source at the U.S. Department of Energy’s SLAC National Accelerator Laboratory."

Transferred to its mammalian host by the bite of the tsetse fly, the effects of the parasite are almost always fatal if treatment is not received. The sleeping sickness parasite threatens more than 60 million people in sub-Saharan Africa and annually kills an estimated 30,000 people. Current drug treatments are not well tolerated, cause serious side effects and the parasites are becoming increasingly drug resistant.

“This paper is so exciting as it is based on nanocrystals grown by the groups at DESY in Hamburg and at the University of Lübeck inside living insect cells,” said Petra Fromme, a professor in ASU’s Department of Chemistry and Biochemistry. “This is the first novel structure determined by the new method of femtosecond crystallography. The structure may be of great importance for the development of new drugs to fight sleeping sickness, as it shows novel features of the structure of the CatB protein, a protease that is essential for the pathogenesis, including the structure of natural inhibitor peptide bound in the catalytic cleft of the enzyme.”

An additional difficulty includes the fact that the cathepsin B enzyme is also found in humans and all mammals. However the discovery of the enzyme’s 3D structure has enabled the researchers to pinpoint distinctive structural differences between the human and the parasite’s form of the enzyme. Subsequent drug targets can selectively block the parasite’s enzyme, leaving the patient’s intact.

In addition to Spence and Fromme, other ASU members of the team are Bruce Doak, professor of physics; Uwe Weierstall, research professor in physics; faculty research associates Raimund Fromme, Ingo Grotjohann and Tzu-Chiao Chao; Nadia Zatsepin, post-doctoral researcher, graduate students Christopher Kupitz (Biochemistry), D. Wang (Physics) and Mark Hunter and Richard Kirian who graduated with Ph.D.s from ASU in Chemistry and Physics respectively and now work on the femtosecond crystallography project at Lawrence Livermore National Laboratory and DESY.

The ASU group developed the sample delivery system, worked on the characterization of the crystals with dynamic light scattering and SONNIC and did the early development work on the new data analysis method. All ASU participants are members of the College of Liberal Arts & Sciences.

International team members in addition to those already mentioned include researchers from the Max Planck Institute, Heidelberg, University of Gothenburg, University of Tübingen and Lawrence Livermore National Laboratory.
Jenny Green, jenny.green@asu.edu
480-965-1430
Department of Chemistry and Biochemistry

Jenny Green | EurekAlert!
Further information:
http://www.asu.edu

Further reports about: 3D structure ASU Biochemistry DESY Max Planck Institute drug treatment

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>