Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X marks the spot

08.11.2010
Cloning efficiency is undermined by widespread disruption of genomic regulation resulting largely from defective expression of a single gene

Despite their name, not all clones are created equal. This is especially true for the products of somatic cell nuclear transfer (SCNT), which entails the transplantation of the nucleus from a mature somatic cell, or non-reproductive cell, into an oocyte, or immature female ovum, whose nucleus has been removed.


Figure 1: The success rate of producing mice using SCNT cloning improves considerably after disrupting the Xist gene on the activated X chromosome of the donor nucleus. Copyright : © 2010 Atsuo Ogura

The result is a genomically reprogrammed cell that has been ‘tricked’ into acting like a fertilized egg, and subsequently develops into a clone of the nucleus-donor organism; however, the success rate for this procedure is remarkably low and many of the resulting clones exhibit a spectrum of developmental problems.

“We wanted to know if there were any clone-specific gene expression patterns in these embryos that might be related to their phenotypic abnormalities,” says Atsuo Ogura of the RIKEN BioResource Center in Tsukuba. To solve this mystery, Ogura and colleagues performed an extensive analysis of gene expression activity, comparing the profiles of SCNT-derived mouse embryos versus healthy embryos obtained from in vitro fertilization (IVF)1.

They observed a striking pattern of clone-specific reduced expression of genes situated on the X sex chromosome. This suggested that there may be a malfunction in the activity of the Xist locus, which ensures that gene expression levels in female cells mirror those of their single X chromosome-bearing male counterparts. “In female somatic cells, one of the X chromosomes is inactivated by RNA transcripts from the Xist gene on the same X chromosome,” explains Ogura. “In pre-implantation embryos, the choice of which X gets inactivated is derived from the ‘memory’ of oocytes and sperm.”

This memory appeared to be lost or disrupted in SCNT embryos, with many embryos showing evidence of widespread gene inactivation on both X chromosomes as early as the four-cell stage. However, the researchers found that this effect could be mitigated considerably by deriving SCNT embryos from donor nuclei in which the active X chromosome contains a defective copy of Xist. Strikingly, this also helped to normalize the expression of many non-X-linked genes that were abnormally regulated in SCNT but not IVF embryos, indicating that the effects of this X chromosome inactivation were more far-reaching than expected.

This strategy yielded eight- to nine-fold improvement in their SCNT success rate in mice (Fig. 1). Ogura and colleagues now hope to confirm that the same mechanism is specifically impeding cloning in other animal species as a prelude to the development of methods that might broadly bolster the efficacy of SCNT for both research and therapeutic applications.

The corresponding author for this highlight is based at the Bioresource Engineering Division, RIKEN BioResource Center

Journal information

Inoue, K., Kohda, T., Sugimoto, M., Sado, T., Ogonuki, N., Matoba, S., Shiura, H., Ikeda, R., Mochida, K., Fujii, T. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>