Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

X chromosomal genetic variant delays progression to AIDS in HIV-infected women

14.08.2009
After infection with HIV, the destruction of the immune system and the subsequent development of AIDS symptoms progress at different rates in different patients.

An international research team coordinated by the Fritz Lipmann Institute, Jena, Germany, has now discovered an X-linked genetic variant that is associated with the delayed loss of immune cells in HIV-infected women, but not men.

Human immunodeficiency virus (HIV) mainly infects and destroys CD4 cells, an important component of the human immune system. The rate of this cell destruction, which ultimately leads to the development of the acquired immunodeficiency syndrome (AIDS), can vary greatly between patients. It has been suspected for some time that genetic factors contribute to the rate of progression to AIDS. A research team from the Genome Analysis Group at the Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI) in Jena, Germany, together with colleagues from the Department of Infection Models of the German Primate Research Centre (DPZ), Göttingen, the Institute for Medical Informatics and Statistics of the Christian-Albrechts-University, Kiel, and the Cologne Centre for Genomics of the University of Cologne, has now discovered such a genetic factor.

In their study, the researchers made use of a particular animal model of AIDS, rhesus monkeys (Macaca mulatta), that benefits greatly from its close evolutionary relationship to humans. According to the research team's working hypothesis, genetic factors that influence the course of virus infection in rhesus monkeys should play a similar role for HIV infection in humans. "Therefore, people at the DPZ in Göttingen have collected and comprehensively characterized specimens from rhesus monkeys with virus-induced immunodeficiency over a period of 15 years", explains immunogeneticist Dr. Ulrike Sauermann. "With these unique specimens, we were able to screen the genome of rhesus monkeys for variations associated with the rate of disease progression in that species", says Professor Peter Nürnberg, human geneticist at the University of Cologne. Two relevant genomic regions were discovered. One of them was located on rhesus chromosome 4 and encodes genes of the immune response that are well known to be activated following viral infections in both rhesus monkeys and humans.

The discovery of a region on the rhesus X chromosome, however, was a real surprise. "In almost 30 years of intensive HIV and AIDS research, no evidence has been found so far for a contribution of the sex chromosomes to disease progression", commented genome expert Dr. Matthias Platzer, head of the Jena laboratory. It had been known for some time, however, that surprisingly smaller numbers of viruses and higher numbers of CD4 immune cells can be found in the blood of some HIV-infected women, compared to infected men.

In order to confirm the rhesus findings in humans, the team analysed the analogous region of the X chromosome in HIV-infected patients. "With the target set by the animal model, we were able to discover a genetic variant that is associated with a reduced rate of CD4 cell loss in some female AIDS patients", underlines Professor Michael Krawczak, population geneticist from the University of Kiel. A second surprising, yet inexplicable result was that men do not seem to benefit from the sequence variant of interest. "In essence, we have shown for the first time that a single nucleotide polymorphism (SNP) on the X chromosome is associated with a delayed progression of HIV infection in females", says molecular geneticist Dr. Roman Siddiqui from the FLI, who currently pursues follow-up research projects at the DPZ.

The disease-associated SNP lies between two genes in a region that has remained almost unchanged during the evolution of humans, chimpanzees, rhesus monkeys and mice. Future investigation of the little-known function of these genes will help researchers to assess whether and how the genes may impact the rate of immune cell loss after HIV infection and the consequent progression to AIDS. Remarkably, the beneficial SNP variant is more frequent in Asian than in African and European populations. While only 20% of HIV-infected women of European decent analysed so far carried the advantageous SNP variant, it is expected to occur in the majority of Asian women. The identification of the disease relevance of this variant is likely to open new paths for research on sex-specific aspects of HIV infection and AIDS treatment.

The study was supported by the German Federal Ministry of Education and Research through the National Genome Research Network.

Original publication:
X-chromosomal variation is associated with slow progression to AIDS in HIV-infected women.
Siddiqui RA, Sauermann U, Altmüller J, Fritzer E, Nothnagel M, Dalibor N, Fellay J, Kaup FJ, Stahl-Hennig C, Nürnberg P, Krawczak M, Platzer M.

American Journal of Human Genetics, published online August 13, 2009

Contact:
Roman Siddiqui, DPZ Göttingen, rsidd@dpz.eu
Ulrike Sauermann, DPZ Göttingen, usauerm@dpz.gwdg.de
Peter Nürnberg, Universität zu Köln, nuernberg@uni-koeln.de
Michael Krawczak, Christian-Albrechts Universität zu Kiel, krawczak@medinfo.uni-kiel.de

Matthias Platzer, FLI Jena, mplatzer@fli-leibniz.de

Dr. Eberhard Fritz | idw
Further information:
http://www.fli-leibniz.de

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>