Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WWU researchers furnish DNA with tiny "wire" / Natural DNA structure preserved

18.01.2010
Scientists from the University of Münster and the University of Zurich have produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved. The results of their research are presented in the current online edition of the prestigious magazine "Nature Chemistry".

The DNA biomolecule, responsible in nature for storing hereditary information, is being used increasingly as a component in nanotechnology. One successful approach for producing functional nanostructures from DNA is to insert metal ions into an artificial DNA double helix, which serves as a framework.

"If several metal ions are arranged next to each other in this way," says Prof. Jens Müller from the Institute of Inorganic and Analytical Chemistry at WWU, "a molecule is produced which incorporates, so to speak, a one-dimensional wire." Together with researchers from the University of Zurich, his team has now produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved.

Prof. Müller's team replaced some of the so-called nucleobases, found inside each DNA spiral, with artificial components. "In the case of the DNA we have created, these artificial components are able to bind extremely tightly to silver ions," says Prof. Müller. "As a result, we have succeeded in arranging three silver ions directly next to each other inside the spiral, like a string of pearls." What's special about the structure of the DNA helix, which was determined in collaboration with researchers at the Institute of Inorganic Chemistry at the University of Zurich, is the fact that the form of the spiral is hardly changed through the insertion of the metal ions. "Such information about the structure is enormously important for the further development of functionalized DNA," comments Prof. Müller.

Before the artificial DNA can be used in future as a nanowire or nanomagnet - or in analytics, e.g. to ascertain the existence of heavy metals in tap-water - further physical properties must first be examined in detail, now that the structure has been successfully clarified.

Jens Müller has been Professor of Inorganic Chemistry at the WWU Münster since 2008. Before that he was a beneficiary of the Emmy Noether Programme for outstanding junior research staff at universities. Since January 2010 he has also been heading a subproject in the Collaborative Research Centre 858 - "Synergistic Effects in Chemistry: From Additivity to Cooperativity".

Reference: Johannsen S. et al. (2010): Solution structure of a DNA double helix with consecutive metal-mediated base pairs; Nature Chemistry, Published online: 17 January 2010 | doi:10.1038/nchem.512

Dr. Christina Heimken | idw
Further information:
http://www.muellerlab.org/
http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.512.html

Further reports about: CHEMISTRY DNA Nature Immunology WWU artificial component double helix inorganic silver ions

More articles from Life Sciences:

nachricht The herbivore dilemma: How corn plants fights off simultaneous attacks
09.02.2016 | Boyce Thompson Institute for Plant Research

nachricht Shedding Light on Bacteria
09.02.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

Im Focus: Wbp2 is a novel deafness gene

Researchers at King’s College London and the Wellcome Trust Sanger Institute in the United Kingdom have for the first time demonstrated a direct link between the Wbp2 gene and progressive hearing loss. The scientists report that the loss of Wbp2 expression leads to progressive high-frequency hearing loss in mouse as well as in two clinical cases of children with deafness with no other obvious features. The results are published in EMBO Molecular Medicine.

The scientists have shown that hearing impairment is linked to hormonal signalling rather than to hair cell degeneration. Wbp2 is known as a transcriptional...

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

Body temperature triggers newly developed polymer to change shape

09.02.2016 | Materials Sciences

Using renewable energy in heating networks more efficiently

09.02.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>