Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WWU researchers furnish DNA with tiny "wire" / Natural DNA structure preserved

18.01.2010
Scientists from the University of Münster and the University of Zurich have produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved. The results of their research are presented in the current online edition of the prestigious magazine "Nature Chemistry".

The DNA biomolecule, responsible in nature for storing hereditary information, is being used increasingly as a component in nanotechnology. One successful approach for producing functional nanostructures from DNA is to insert metal ions into an artificial DNA double helix, which serves as a framework.

"If several metal ions are arranged next to each other in this way," says Prof. Jens Müller from the Institute of Inorganic and Analytical Chemistry at WWU, "a molecule is produced which incorporates, so to speak, a one-dimensional wire." Together with researchers from the University of Zurich, his team has now produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved.

Prof. Müller's team replaced some of the so-called nucleobases, found inside each DNA spiral, with artificial components. "In the case of the DNA we have created, these artificial components are able to bind extremely tightly to silver ions," says Prof. Müller. "As a result, we have succeeded in arranging three silver ions directly next to each other inside the spiral, like a string of pearls." What's special about the structure of the DNA helix, which was determined in collaboration with researchers at the Institute of Inorganic Chemistry at the University of Zurich, is the fact that the form of the spiral is hardly changed through the insertion of the metal ions. "Such information about the structure is enormously important for the further development of functionalized DNA," comments Prof. Müller.

Before the artificial DNA can be used in future as a nanowire or nanomagnet - or in analytics, e.g. to ascertain the existence of heavy metals in tap-water - further physical properties must first be examined in detail, now that the structure has been successfully clarified.

Jens Müller has been Professor of Inorganic Chemistry at the WWU Münster since 2008. Before that he was a beneficiary of the Emmy Noether Programme for outstanding junior research staff at universities. Since January 2010 he has also been heading a subproject in the Collaborative Research Centre 858 - "Synergistic Effects in Chemistry: From Additivity to Cooperativity".

Reference: Johannsen S. et al. (2010): Solution structure of a DNA double helix with consecutive metal-mediated base pairs; Nature Chemistry, Published online: 17 January 2010 | doi:10.1038/nchem.512

Dr. Christina Heimken | idw
Further information:
http://www.muellerlab.org/
http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.512.html

Further reports about: CHEMISTRY DNA Nature Immunology WWU artificial component double helix inorganic silver ions

More articles from Life Sciences:

nachricht NIH scientists find 6 new genetic risk factors for Parkinson's
28.07.2014 | NIH/National Institute of Neurological Disorders and Stroke

nachricht Fighting bacteria – with viruses
28.07.2014 | European Molecular Biology Laboratory EMBL

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

9th European Wood-Based Panel Symposium 2014 – meeting point for the wood-based material branch

24.07.2014 | Event News

“Lens on Life” - Artists and Scientists Explore Cell Divison

08.07.2014 | Event News

First International Conference on Consumer Research | ICCR 2014: Early bird deadline July 31, 2014

08.07.2014 | Event News

 
Latest News

Wildlife Conservation Society Helps Safeguard Belize’s Barrier Reef with Conservation Drones

28.07.2014 | Ecology, The Environment and Conservation

NIH scientists find 6 new genetic risk factors for Parkinson's

28.07.2014 | Life Sciences

Stanford team achieves 'holy grail' of battery design: A stable lithium anode

28.07.2014 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>