Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WWU researchers furnish DNA with tiny "wire" / Natural DNA structure preserved

18.01.2010
Scientists from the University of Münster and the University of Zurich have produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved. The results of their research are presented in the current online edition of the prestigious magazine "Nature Chemistry".

The DNA biomolecule, responsible in nature for storing hereditary information, is being used increasingly as a component in nanotechnology. One successful approach for producing functional nanostructures from DNA is to insert metal ions into an artificial DNA double helix, which serves as a framework.

"If several metal ions are arranged next to each other in this way," says Prof. Jens Müller from the Institute of Inorganic and Analytical Chemistry at WWU, "a molecule is produced which incorporates, so to speak, a one-dimensional wire." Together with researchers from the University of Zurich, his team has now produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved.

Prof. Müller's team replaced some of the so-called nucleobases, found inside each DNA spiral, with artificial components. "In the case of the DNA we have created, these artificial components are able to bind extremely tightly to silver ions," says Prof. Müller. "As a result, we have succeeded in arranging three silver ions directly next to each other inside the spiral, like a string of pearls." What's special about the structure of the DNA helix, which was determined in collaboration with researchers at the Institute of Inorganic Chemistry at the University of Zurich, is the fact that the form of the spiral is hardly changed through the insertion of the metal ions. "Such information about the structure is enormously important for the further development of functionalized DNA," comments Prof. Müller.

Before the artificial DNA can be used in future as a nanowire or nanomagnet - or in analytics, e.g. to ascertain the existence of heavy metals in tap-water - further physical properties must first be examined in detail, now that the structure has been successfully clarified.

Jens Müller has been Professor of Inorganic Chemistry at the WWU Münster since 2008. Before that he was a beneficiary of the Emmy Noether Programme for outstanding junior research staff at universities. Since January 2010 he has also been heading a subproject in the Collaborative Research Centre 858 - "Synergistic Effects in Chemistry: From Additivity to Cooperativity".

Reference: Johannsen S. et al. (2010): Solution structure of a DNA double helix with consecutive metal-mediated base pairs; Nature Chemistry, Published online: 17 January 2010 | doi:10.1038/nchem.512

Dr. Christina Heimken | idw
Further information:
http://www.muellerlab.org/
http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.512.html

Further reports about: CHEMISTRY DNA Nature Immunology WWU artificial component double helix inorganic silver ions

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>