Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WWU researchers furnish DNA with tiny "wire" / Natural DNA structure preserved

18.01.2010
Scientists from the University of Münster and the University of Zurich have produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved. The results of their research are presented in the current online edition of the prestigious magazine "Nature Chemistry".

The DNA biomolecule, responsible in nature for storing hereditary information, is being used increasingly as a component in nanotechnology. One successful approach for producing functional nanostructures from DNA is to insert metal ions into an artificial DNA double helix, which serves as a framework.

"If several metal ions are arranged next to each other in this way," says Prof. Jens Müller from the Institute of Inorganic and Analytical Chemistry at WWU, "a molecule is produced which incorporates, so to speak, a one-dimensional wire." Together with researchers from the University of Zurich, his team has now produced an artificial DNA with a razor-thin "wire" inside, demonstrating in the process that the natural structure is preserved.

Prof. Müller's team replaced some of the so-called nucleobases, found inside each DNA spiral, with artificial components. "In the case of the DNA we have created, these artificial components are able to bind extremely tightly to silver ions," says Prof. Müller. "As a result, we have succeeded in arranging three silver ions directly next to each other inside the spiral, like a string of pearls." What's special about the structure of the DNA helix, which was determined in collaboration with researchers at the Institute of Inorganic Chemistry at the University of Zurich, is the fact that the form of the spiral is hardly changed through the insertion of the metal ions. "Such information about the structure is enormously important for the further development of functionalized DNA," comments Prof. Müller.

Before the artificial DNA can be used in future as a nanowire or nanomagnet - or in analytics, e.g. to ascertain the existence of heavy metals in tap-water - further physical properties must first be examined in detail, now that the structure has been successfully clarified.

Jens Müller has been Professor of Inorganic Chemistry at the WWU Münster since 2008. Before that he was a beneficiary of the Emmy Noether Programme for outstanding junior research staff at universities. Since January 2010 he has also been heading a subproject in the Collaborative Research Centre 858 - "Synergistic Effects in Chemistry: From Additivity to Cooperativity".

Reference: Johannsen S. et al. (2010): Solution structure of a DNA double helix with consecutive metal-mediated base pairs; Nature Chemistry, Published online: 17 January 2010 | doi:10.1038/nchem.512

Dr. Christina Heimken | idw
Further information:
http://www.muellerlab.org/
http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.512.html

Further reports about: CHEMISTRY DNA Nature Immunology WWU artificial component double helix inorganic silver ions

More articles from Life Sciences:

nachricht Great apes communicate cooperatively
25.05.2016 | Max-Planck-Institut für Ornithologie

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>