Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researchers discover key mechanism behind sleep

14.09.2010
Finding holds promise for treatment of fatigue and sleep disorders, more detailed understanding of brain

Washington State University researchers have discovered the mechanism by which the brain switches from a wakeful to a sleeping state. The finding clears the way for a suite of discoveries, from sleeping aids to treatments for stroke and other brain injuries.

"We know that brain activity is linked to sleep, but we've never known how," said James Krueger, WSU neuroscientist and lead author of a paper in the latest Journal of Applied Physiology. "This gives us a mechanism to link brain activity to sleep. This has not been done before."

The mechanism—a cascade of chemical transmitters and proteins—opens the door to a more detailed understanding of the sleep process and possible targets for drugs and therapies aimed at the costly, debilitating and dangerous problems of fatigue and sleeplessness. Sleep disorders affect between 50 and 70 million Americans, according to the Institute of Medicine of the National Academies. The Institute also estimates the lost productivity and mishaps of fatigue cost businesses roughly $150 billion, while motor vehicle accidents involving tired drivers cost at least $48 billion a year.

The finding is one of the most significant in Krueger's 36-year career, which has focused on some of the most fundamental questions about sleep.

Even before the dawn of science, people have known that wakeful activity, from working to thinking to worrying, affects the sleep that follows. Research has also shown that, when an animal is active and awake, regulatory substances build up in the brain that induce sleep.

"But no one ever asked before: What is it in wakefulness that is driving these sleep regulatory substances?" said Krueger. "No one ever asked what it is that's initiating these sleep mechanisms. People have simply not asked the question."

The researchers documented how ATP (adenosine triphosphate), the fundamental energy currency of cells, is released by active brain cells to start the molecular events leading to sleep. The ATP then binds to a receptor responsible for cell processing and the release of cytokines, small signaling proteins involved in sleep regulation.

By charting the link between ATP and the sleep regulatory substances, the researchers have found the way in which the brain keeps track of activity and ultimately switches from a wakeful to sleeping state. For example, learning and memory depend on changing the connections between brain cells. The study shows that ATP is the signal behind those changes.

The finding reinforces a view developed by Krueger and his colleagues that sleep is a "local phenomenon, that bits and pieces of the brain sleep" depending on how they've been used.

The link between sleep, brain cell activity and ATP has many practical consequences, Krueger said.

For example:

The study provides a new set of targets for potential medications. Drugs designed to interact with the receptors ATP binds to may prove useful as sleeping pills.

Sleep disorders like insomnia can be viewed as being caused by some parts of the brain being awake while other parts are asleep, giving rise to new therapies.

ATP-related blood flow observed in brain-imaging studies can be linked to activity and sleep.
Researchers can develop strategies by which specific brain cell circuits are oriented to specific tasks, slowing fatigue by allowing the used parts of the brain to sleep while one goes about other business. It may also clear the way for stroke victims to put undamaged regions of their brains to better use.

Brain cells cultured outside the body can be used to study brain cell network oscillations between sleep-like and wake-like states, speeding the progress of brain studies.

An abstract of "ATP and the purine type 2 X7 receptor affect sleep" can be found at http://jap.physiology.org/cgi/content/abstract/japplphysiol.00586.2010v1.

James Krueger | EurekAlert!
Further information:
http://www.wsu.edu

Further reports about: ATP Fatigue WSU brain cell brain switches signaling protein sleep disorders

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>