Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WSU researchers demonstrate rare animal model for studying depression

26.10.2011
Washington State University researchers have taken a promising step toward creating an animal model for decoding the specific brain circuits involved in depression. By electrically stimulating a brain region central to an animal’s primary emotions, graduate student Jason Wright and his advisor Jaak Panksepp saw rats exhibit a variety of behaviors associated with a depressed, negative mood, or affect.
"We might now have a model that allows us to actually know where to look in the brain for changes relevant to depression, and we can monitor how activity in these regions change during states of negative affect and the restoration of positive affect,” says Wright. "There are no other models out there like this.”

The researchers caution that their work comes with a variety of caveats and that there are still many factors that need to be evaluated.

But while rats aren’t humans and can’t talk about their emotions, researchers like Panksepp have demonstrated in the past that their emotional behaviors can be valid indicators of their moods. The researchers also believe a focus on specific emotional circuits, shared by all mammals, is an improvement over less specific stressors.

"No one has previously stimulated a specific brain system and produced a depressive cascade,” says Panksepp, who has pioneered work in how core emotions stem from deep, ancient parts of the brain. "That is what this paper does.”

Their research, published in this month’s issue of the journal Neuroscience & Biobehavioral Reviews, opens up new avenues of experimentation and treatments by offering a model in which scientists can directly create positive and negative affects with the dependent and independent variables that science relies on.

And with the pandemic of depression in Western society, the researchers say there is a real need for more specific tests focusing on depression-linked emotion networks in a highly controlled fashion.

For now, they say, the lack of animal models aimed at the core emotional issues of depression might be why little progress has been made in antidepressant medicinal development. They note that no conceptually novel drug treatments of depression have emerged since the accidental discovery in the 1960s that increasing brain neurotransmitters like norepinephrine and serotonin can alleviate some depressive symptoms.

Wright and Panksepp focused on a region called the dorsal periaqueductal gray, an area of gray matter in the midbrain that controls perceptions of pain, the fight-or-flight response and emotions of grief, panic and social loss. For 15 days, the researchers administered brief electrical stimuli to the region for a total of 30 seconds over a period of 10 minutes each day. For up to a month afterwards, they documented dramatic reductions in ultrasonic sounds that indicate a positive affective state.

Earlier work by Panksepp’s group has demonstrated that the squeal-like ultrasonic sounds reflect a primordial form of social joy comparable—and perhaps evolutionarily linked—to human laughter.

The rats also exhibited higher levels of agitation, drank less sugar water and explored their surroundings less—further indications of a depressed state.

Wright and Panksepp say they hope this kind of controlled, network-focused work opens a potential new era in the development of psychiatric models.
"In this way,” they write, "we may be able to more precisely identify the types of brain systems that lead to various forms of depressive despair and sift through their neurochemical underpinnings for the most promising brain chemicals and vectors for new medicinal development.”

Source:
Jaak Panksepp, Baily Endowed Chair of Animal Well-Being Science, Washington State University, 509-335-5803, jpanksepp@vetmed.wsu.edu
Media contact:
Eric Sorensen, Science Writer, 509-335-4846, eric.sorensen@wsu.edu

Jaak Panksepp | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>