Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


WSU researchers demonstrate rare animal model for studying depression

Washington State University researchers have taken a promising step toward creating an animal model for decoding the specific brain circuits involved in depression. By electrically stimulating a brain region central to an animal’s primary emotions, graduate student Jason Wright and his advisor Jaak Panksepp saw rats exhibit a variety of behaviors associated with a depressed, negative mood, or affect.
"We might now have a model that allows us to actually know where to look in the brain for changes relevant to depression, and we can monitor how activity in these regions change during states of negative affect and the restoration of positive affect,” says Wright. "There are no other models out there like this.”

The researchers caution that their work comes with a variety of caveats and that there are still many factors that need to be evaluated.

But while rats aren’t humans and can’t talk about their emotions, researchers like Panksepp have demonstrated in the past that their emotional behaviors can be valid indicators of their moods. The researchers also believe a focus on specific emotional circuits, shared by all mammals, is an improvement over less specific stressors.

"No one has previously stimulated a specific brain system and produced a depressive cascade,” says Panksepp, who has pioneered work in how core emotions stem from deep, ancient parts of the brain. "That is what this paper does.”

Their research, published in this month’s issue of the journal Neuroscience & Biobehavioral Reviews, opens up new avenues of experimentation and treatments by offering a model in which scientists can directly create positive and negative affects with the dependent and independent variables that science relies on.

And with the pandemic of depression in Western society, the researchers say there is a real need for more specific tests focusing on depression-linked emotion networks in a highly controlled fashion.

For now, they say, the lack of animal models aimed at the core emotional issues of depression might be why little progress has been made in antidepressant medicinal development. They note that no conceptually novel drug treatments of depression have emerged since the accidental discovery in the 1960s that increasing brain neurotransmitters like norepinephrine and serotonin can alleviate some depressive symptoms.

Wright and Panksepp focused on a region called the dorsal periaqueductal gray, an area of gray matter in the midbrain that controls perceptions of pain, the fight-or-flight response and emotions of grief, panic and social loss. For 15 days, the researchers administered brief electrical stimuli to the region for a total of 30 seconds over a period of 10 minutes each day. For up to a month afterwards, they documented dramatic reductions in ultrasonic sounds that indicate a positive affective state.

Earlier work by Panksepp’s group has demonstrated that the squeal-like ultrasonic sounds reflect a primordial form of social joy comparable—and perhaps evolutionarily linked—to human laughter.

The rats also exhibited higher levels of agitation, drank less sugar water and explored their surroundings less—further indications of a depressed state.

Wright and Panksepp say they hope this kind of controlled, network-focused work opens a potential new era in the development of psychiatric models.
"In this way,” they write, "we may be able to more precisely identify the types of brain systems that lead to various forms of depressive despair and sift through their neurochemical underpinnings for the most promising brain chemicals and vectors for new medicinal development.”

Jaak Panksepp, Baily Endowed Chair of Animal Well-Being Science, Washington State University, 509-335-5803,
Media contact:
Eric Sorensen, Science Writer, 509-335-4846,

Jaak Panksepp | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>