Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Writing with a Nanoquill

Dip-pen nanolithography with a porous tip generates nanopatterns with viruses

One process used to produce nanoscopic structures like ever-smaller integrated circuits, biosensors, and gene chips is known as dip-pen nanolithography, in which the nanotip of an atomic force microscope is used to “write” a pattern directly on a substrate.

In the journal Angewandte Chemie, a Korean research team led by Jung-Hyurk Lim at Chungju National University in Chungju have now introduced a refined nanotip for this technique. With their “nanoquill”, it is possible to produce complex nanopatterns from large biomolecules—such as complete virus particles—rapidly, precisely, and flexibly.

Atomic force microscopy, originally designed for the determination of the nanoscopic structures of surfaces, has since been very successfully put to another use: In dip-pen nanolithography, the nanotip is dipped like a quill into an “ink well” and the molecules are then deposited like ink onto a suitable substrate to form complex nanopatterns.

Critical to this process is a tiny water meniscus that forms between the surface to be written on and the nanotip; the meniscus provides a pathway by which the molecules in the ink—DNA, peptides, or proteins—can move to the surface. However, larger molecules cannot diffuse through the meniscus and cannot be deposited on the surface. Thanks to a novel nanotip, the Korean scientists have now overcome this limitation.

The new tip is made of silicon dioxide that has been coated with a well-characterized biocompatible polymer. This forms a nanoporous polymer network with pore diameters between 50 and several hundred nanometers.

When this tip is dipped into a solution containing biomolecules, the polymer absorbs the liquid and swells into a gel. When the loaded “nanoquill” comes into contact with an amine-coated substrate, the biomolecules diffuse out of the gel onto the surface. Because diffusion from the gel onto the surface encounters less resistance than diffusion through a water meniscus, it is possible to deposit much larger biomolecules than in the conventional method.

As a demonstration, the researchers selected virus particles bound to a fluorescence dye as their ink. They were able to use this to produce patterns with more than 1000 individual nanodots without having to refill the quill. Unlike the conventional technique, increasing contact time between the surface and the tip of the quill increases the number of individual viruses within the dot, but not its diameter. However, the researchers were able to generate dots of various sizes (400, 200, and 80 nm) by varying the diameter of the tip. This variation can be quite easily controlled by the duration of the polymerization reaction.

Author: Jung-Hyurk Lim, Chungju National University (Rep. Korea),

Title: Polymer-Coated Tips for Patterning of Viruses by Dip-Pen Nanolithography

Angewandte Chemie International Edition 2010, 49, No. 50, 9689–9692, Permalink to the article:

Jung-Hyurk Lim | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>