Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Re-write the textbooks: transcription is bidirectional

26.01.2009
A genome wide study of transcription in yeast redefines the concept of promoters

Genes that contain instructions for making proteins make up less than 2% of the human genome. Yet, for unknown reasons, most of our genome is transcribed into RNA. The same is true for many other organisms that are easier to study than humans.

Researchers in the groups of Lars Steinmetz at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, and Wolfgang Huber at the European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, have now unravelled how yeast generates its transcripts and have come a step closer to understanding their function.

The study, published online in Nature, redefines the concept of promoters (the start sites of transcription) contradicting the established notion that they support transcription in one direction only. The results are also representative of transcription in humans.

Investigating all transcripts produced in a yeast cell, the scientists found that most regions of the yeast genome produce several transcripts starting at the same promoter. These transcripts are interleaved and overlapping on the DNA. In contrast to what was previously thought, the vast majority of promoters seem to initiate transcription in both directions.

Not all of the produced transcripts are stable, many are degraded rapidly making it difficult to observe what they do. While some of the RNA molecules might be ‘transcriptional noise’ without function, other transcripts control the expression of genes and production of proteins. The act of transcription itself is also likely to play an important role in regulation of gene expression. Transcribing one stretch of DNA might either help or in other cases interfere with the transcription of a gene close by. Moreover, transcripts without a current purpose can serve as ‘raw material for evolution’ and acquire new functions over time.

The results shed light on the complex organisation of the yeast genome and the insights gained extend to transcription in humans. A better understanding of transcription mechanisms could find application in new technologies to tune gene regulation in the future.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.de

Further reports about: DNA Molecular Biology RNA RNA molecules human genome production of proteins

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Chances to treat childhood dementia

24.07.2017 | Health and Medicine

Improved Performance thanks to Reduced Weight

24.07.2017 | Automotive Engineering

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>