Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Worms Reveal Secrets of Wound Healing Response

The lowly and simple roundworm may be the ideal laboratory model to learn more about the complex processes involved in repairing wounds and could eventually allow scientists to improve the body’s response to healing skin wounds, a serious problem in diabetics and the elderly.

That’s the conclusion of biologists at the University of California, San Diego who have discovered genes in the laboratory roundworm C. elegans that signal the presence of surface wounds and trigger another series of chemical reactions that allow the worms to quickly close cuts in their surfaces that would turn fatal if left unrepaired.

The scientists report in the December 6 issue of the journal Current Biology that these two findings and a third discovery they made in the worms, involving genes that inhibit wound healing, could allow scientists one day to design ways to improve the healing of cuts and sores by possibly blocking the action of these inhibitory genes or finding ways to enhance the chemical signaling and wound healing process. An advance copy of their paper is being published online this week by the journal.

“What we’ve shown in this paper is that a biochemical pathway is activated by wounding in the worms that involves calcium,” said Andrew Chisholm, a professor of biology at UC San Diego, who headed the research effort. “It’s been known for some time that one of the things that happens when you damage a cell is that calcium levels within the cell increase.”

But in a series of experiments with C. elegans, Chisholm and postdoctoral fellow Suhong Xu found out much more. They took time-lapse movies of areas around the transparent worms where they punctured the skin with a needle or laser. Then they monitored the calcium with a fluorescent protein so they could see how the calcium molecules spread from the point of injury. They also developed genetic screens to pinpoint the specific calcium pathway or “channel” that is signaling the presence of the wound and stimulating the healing process.

“We think the channel is playing an important role in either sensing damage or responding to some other receptor that senses damage,” said Chisholm. “Is it sensing a change in the tension of the cell? Is it sensing some kind of change in electrical potential? We don’t know.”

While biomedical scientists have made great strides in understanding how the body responds to infections and chemically rebuilds the skin when the wound healing process is underway, very little is known about what happens within the cell or the body in the minutes or hours following injury. “That’s still a big, big question,” Chisholm said. “But we think we’ve made a start that will help us answer that question.”

He thinks the lowly roundworms may be the ideal animals to probe that question and others involving wound healing for a variety of reasons: they are small, transparent, have a delicate surface susceptible to injury and a rapid wound response mechanism that keeps their surface wounds from being fatal.

“They have a hydrostatic skeleton in which the skin and muscles are under pressure to allow the animal to stay semi-rigid, so when you jab a worm with a needle it will, in effect, explode,” he said. “But remarkably, they don’t die when you do that because they have evolved ways to very rapidly close wounds to survive in the wild. In their natural environment, their predators try to exploit the worm’s vulnerable exoskeleton. There are a whole group of fungi with tiny spikes that just sit around waiting for the worms to crawl over them so they can poke holes through their cuticle.”

“For us, they are easy to work with, because worms are small, easy to grow and they’re transparent, so when you put them on a slide, you can see the calcium clearly,” he said.

The transparent worms also allowed Chisholm and Xu to get their first glimpse of how the worms rapidly close their wounds. In a time lapse movie and in a series of photographs detailed in the paper, the researchers show how actin, a protein found in all cells that plays a role in muscle contraction, is recruited to and surrounds the wound, then closes the cut by tightening the actin like a purse string.

“We think that calcium is regulating this process,” said Chisholm, “because if you knock out calcium with a drug that chelates calcium, essentially locking it up, you don’t get the ring. If you have a genetic mutant worm with low levels of calcium, you don’t get the ring. But if you bathe this mutant in calcium, you can restore this ring.”

In addition, the researchers discovered in roundworms that a protein called DAPK-1 acts to inhibit the closure of wounds, raising the possibility that drugs that inhibit the action of this protein could improve the wound healing process in humans.

“Wound healing in humans is a much more complicated situation than this of course,” Chisholm said. “But the hope is that by learning more about the basic biology of wound responses, we can eventually learn how to heal wounds more quickly or, in the case of the elderly or those with diabetes, overcome their weakened responses to healing.”

The research study was supported by grants from the National Institutes of Health.

Kim McDonald | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>