Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worms Provide Clues for Treating Brain Diseases

24.09.2008
The tiny roundworm bears little resemblance to a person. Its nervous system has just 302 neurons to our 100 billion. Yet it uses many of the same genes and signaling chemicals as the human brain, so studies of its system could have relevance to our own. A new MIT study shows that even the simplest worm behaviors can be controlled by multiple signaling pathways, with implications for treating human brain disorders.

On the surface, the tiny roundworm bears little resemblance to a person. Its nervous system, for example, has just 302 neurons to our 100 billion. Yet it uses many of the same genes and signaling chemicals as the human brain, so studies of its system could have relevance to our own.

Now an MIT team shows that even the simplest worm behaviors can be controlled by multiple signaling pathways. The results might have implications for the treatment of human brain disorders.

In the new study, which appears in the Sept. 21 issue of Nature Neuroscience, H. Robert Horvitz and postdoctoral scientist Niels Ringstad investigated neural pathways of a mutant worm strain with defective egg-laying behavior. Horvitz, a Nobel laureate, is the David H. Koch Professor of Biology, a member of the McGovern Institute for Brain Research at MIT, and a Howard Hughes Medical Institute Investigator.

Normally, a hermaphrodite worm fertilizes its own eggs within the uterus and lays them steadily as they mature. In certain mutant strains, though, this process is blocked, causing the animals to bloat with 50 or more retained embryos.

A genetic screen for such mutants had earlier identified a gene called egl-6. Ringstad and Horvitz discovered that this gene encodes a member of a class of proteins known as G-protein coupled receptors (GPCRs). GPCRs allow cells to respond to hormones, neurotransmitters and other signals, and they are important targets for many human drugs.

Ringstad and Horvitz found that the egl-6 mutants had an over-active form of the receptor, suggesting that the normal function of the receptor is to limit the rate of egg laying. So Ringstad and Horvitz postulated that blocking this signaling pathway genetically might cause the worms to lay their eggs faster. However, doing so produced no effect.

Suspecting the existence of a second inhibitory pathway, the authors tested a variety of candidates. They found an effect when they also blocked signaling by acetylcholine, a well-known neurotransmitter in both worms and humans. Animals lacking both pathways became hyperactive egg layers.

“Inhibition of this simple behavior uses two neurochemical signals,” explains Ringstad. “It’s like having two brakes in a car. We removed the footbrake, expecting the car to roll away, but we also had to disable the handbrake.”

The results support an approach to drug discovery in the field of neuroscience, suggest the authors. If multiple pathways control a neural output so that either pathway is capable of inhibiting that output, then drugs that target just one pathway might have absolutely no effect. Instead, appropriate combinations of drugs will need to be identified.

The Life Sciences Research Foundation, The Medical Foundation and the National Institutes of Health supported this study.

About the McGovern Institute at MIT
The McGovern Institute for Brain Research at MIT is led by a team of world-renowned neuroscientists committed to meeting two great challenges of modern science: understanding how the brain works and discovering new ways to prevent or treat brain disorders. The McGovern Institute was established in 2000 by Patrick J. McGovern and Lore Harp McGovern, who are committed to improving human welfare, communication and understanding through their support for neuroscience research. The director is Robert Desimone, formerly the head of intramural research at the National Institute of Mental Health.

Teresa Herbert | Newswise Science News
Further information:
http://web.mit.edu/mcgovern/
http://www.mit.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>