Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the worm turns

03.04.2013
Scientists show how a monoamine neurotransmitter acts to coordinate a compound movement through two different receptors in C. elegans

New research by scientists at the University of Massachusetts Medical School shows at the single cell level how an external stimulus sets off a molecular chain reaction in the transparent roundworm C. elegans, a process in which a single neurotransmitter coordinates and times two separate actions.

These findings shed new light on how neurons translate sensory input into actions and may one day pave the way to understanding how misfiring neurons contribute to motor symptoms in neurological diseases such as Parkinson's disease. Details of the study were published online by PLOS Biology.

"We've known the broad outline of how a behavior circuit works-a stimulus starts a neuronal cascade, which ultimately activates a muscle cell-for decades," said Mark Alkema, PhD, assistant professor of neurobiology. "The details about how this process works, however, such as which neurotransmitters act through which receptors in which neurons have remained a mystery for even the simplest of behaviors.

"This research provides an answer to the simple question of how the worm turns around and the broader question of how a behavioral sequence is produced on a sub-cellular level. In time, understanding voluntary movement in humans will require answering the same questions about the timing and location of neurons and neurotransmitters-only in the infinitely more complex variety of circuits in the human nervous system," said Dr. Alkema.

Roundworms move by alternately relaxing and contracting ventral and dorsal muscles along both sides of its body. As the animal moves forward, it uses its head to probe for possible threats. A gentle touch to the head of the worm initiates an escape response resulting in the animal ceasing head movements and quickly moving backwards. This initial reaction is closely followed by a deep ventral turn allowing it to move away in the opposite direction.

Earlier studies have shown that tyramine, a monoamine neurotransmitter akin to noradrenaline in humans, is involved in the C. elegans escape response. Specifically, C. elegans have a pair of tyraminergic motor neurons that are essential for coordinating the initial suppression of head movement and the backing response. These neurons release tyramine, which works through a fast-acting ion channel called LGC-55 to inhibit forward movement and relax the neck muscles. How the animal coordinates this movement with the subsequent deep turn that allows it to complete the change in direction and move away from the threat, however, was unknown. In this study, the authors provide evidence that links this initial phase of the escape response to the later stages in which the worm makes a sharp turn and navigates away from the danger.

When C. elegans are placed on a surface containing a high concentration of tyramine they become immobilized. Alkema and colleagues found that this paralysis could be overcome by mutating the C. elegans gene responsible for encoding the G-protein coupled receptor SER-2. Additionally, they found that the SER-2 receptor was active in a set of 13 neurons residing along the ventral nerve cord. The synapses of these neurons were connected to corresponding ventral muscles cells along one side of the worm's body.

Further experiments revealed that the same monoamine neurotransmitter-tyramine-responsible for the initial phase of the escape response was also responsible for activating the slow-acting G-protein coupled receptor SER-2. Activation of this receptor inhibited release of the neurotransmitter GABA and facilitated contraction of the ventral muscles, allowing the animal to complete its turn and resume movement in the opposite direction.

"This study shows how tyramine works through separate receptors to produce a complex behavior requiring the temporal coordination of independent motor programs," said Alkema. "Acting through the fast-acting ionotropic receptor LGC-55, the animal completes the initial movement by ceasing head movement and backing away. At the same time, the slow-acting SER-2 receptor is also being activated by tyramine to complete the turn and facilitate movement in the opposite direction.

"It is the different receptors that allow for the coordination of these actions by the same neurotransmitter," said Alkema. "This indicates that tyramine, much like adrenergic signaling in mammals, coordinates different aspects of the flight response. It's possible that temporally coordinated activation of ionotropic and metabotropic receptors may be a common signaling motif employed across organisms to orchestrate behavioral responses and is something we will be pursing further."

About the University of Massachusetts Medical School

The University of Massachusetts Medical School, one of the fastest growing academic health centers in the country, has built a reputation as a world-class research institution, consistently producing noteworthy advances in clinical and basic research. The Medical School attracts more than $250 million in research funding annually, 80 percent of which comes from federal funding sources. The mission of the Medical School is to advance the health and well-being of the people of the commonwealth and the world through pioneering education, research, public service and health care delivery with its clinical partner, UMass Memorial Health Care. For more information, visit http://www.umassmed.edu.

Jim Fessenden | EurekAlert!
Further information:
http://www.umassmed.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>