Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worm Genome Offers Clues to Evolution of Parasitism

25.09.2008
The genome of a humble worm that dines on the microbial organisms covering the carcasses of dead beetles may provide clues to the evolution of parasitic worms, including those that infect humans, say scientists at Washington University School of Medicine in St. Louis and the Max-Planck Institute for Developmental Biology in Germany.

In a paper published in the current issue of Nature Genetics, the researchers reported finding some surprises as they have decoded the genome of the worm, a tiny nematode called Pristionchus pacificus.

"We found a larger number of genes than we expected," says Sandra Clifton, Ph.D., research assistant professor of genetics and a co-author of the paper. "These include genes that help the worms live in a hostile environment, the result of living in and being exposed to the byproducts of decaying beetle carcasses, and others that also have been found in plant parasitic nematodes. The genome supports the theory that P. pacificus might be a precursor to parasitic worms."

Scientists estimate there are tens of thousands of nematode species. The worms are typically just one millimeter long and can be found in every ecosystem on Earth. Parasitic nematodes can infect humans as well as animals and plants.

One nematode in particular is well known in scientific circles: Caenorhabditis elegans has long been used as a model organism in research laboratories. Its genome sequence was completed in 1998 by Washington University genome scientists working as part of an international research collaboration.

Unlike C. elegans, which lives in the dirt, P. pacificus makes its home in an unusual ecological niche: it lives together with oriental beetles in the United States and Japan in order to devour the bacteria, fungi and other small roundworms that grow on beetle carcasses after they have died. While the beetles are alive and the nematodes' food source is scarce, the worms live in a "resting" stage in which they don't eat or reproduce.

This suspended state, called dauer diapause, is thought to be the infective state of parasitic nematodes. According to the World Health Organization, parasitic nematodes infect about 2 billion people worldwide and severely sicken some 300 million.

The genome of P. pacificus is substantially larger and more complex than C. elegans. It has nearly 170,000 chemical bases and contains 23,500 protein-coding genes. By comparison, C. elegans and the human parasitic nematode Brugia malayi, whose genome was sequenced in 2007, only have about 20,000 and 12,000 protein-coding genes, respectively. Infection with B. malayi causes lymphatic filariasis, which can lead to elephantiasis, a grotesque enlargement of the arms, legs and genitals.

Interestingly, the P. pacificus genome contains a number of genes for cellulases - enzymes that are required to break down cell walls of plants and microorganisms. These genes are nonexistent in C. elegans, although they have been found in plant parasitic nematodes.

"Using genetic tools, we can analyze the development, behavior and ecology of this highly unusual worm to aid in understanding the evolutionary changes that allowed parasitism to occur," says co-author Richard K. Wilson, Ph.D., director of Washington University's Genome Sequencing Center.

The P. pacificus genome was sequenced at Washington University; Ralf Sommer, Ph.D., and colleagues at the Max-Planck Institute supplied the DNA for sequencing and analyzed the sequence data.

The research was funded by the National Human Genome Research Institute and the Max-Planck Society.

Dieterich C, Clifton S, Schuster L, Chinwalla A, Delehaunty K, Dinkelacker I, Fulton L, Fulton R, Godfrey J, Minx P, Mitreva M, Roeseler W, Tian H, Witte H, Yang S-P, Wilson R, Sommer RJ. The genome sequence of Pristionchus pacificus provides a unique perspective on nematode life-style and the evolution toward parasitism.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | Newswise Science News
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>