Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015

The mathematical algorithm jointly developed by EURAC and the University of Bolzano (unibz) now permits exceptionally rapid recognition of regular DNA sequences: the previously required time of 20 days is reduced to just 5 hours under the new method.

Its efficiency and methodological rigour has now led the algorithm to be incorporated in the world’s most widely-used DNA-analysis software. This momentous scientific breakthrough is the work of Daniel Taliun: today at the faculty of Computer Science of the Free University of Bolzano he discussed his doctoral thesis in information technology, completed at the EURAC Center for Biomedicine.

DNA is made up of 3 billion bases, or letters, with the sequence formed of stable segments interspersed with breakpoints. Stable segments are inherited as a single block, while the breaks allow successive sequences to recombine in new ways, ensuring genetic variation between people.

The rapid recognition of regular sequences is of great value as it allows for much more straightforward representation of DNA and for greater precision and speed in identifying those areas of DNA associated with disease. The method developed by Daniel Taliun at the EURAC’s Center for Biomedicine and University of Bolzano is of great assistance in this field; the new algorithm processes the entire DNA in 1% of the time previously required, down from 20 days to just 5 hours.

“The results caught the attention of the leaders of PLINK, the most widely-used software at global level for genetic data analysis, who asked us if they could integrate our algorithm into their program,” explains Cristian Pattaro, head of the biostatistics group at EURAC’s Center for Biomedicine and the research group’s specialist on aspects related to genetics and biostatistics.

“This project combines mathematics with information technology and genetics and has merged the skill sets of two organisations. The University of Bolzano and EURAC have applied their areas of specialisation to achieve a level of excellence that has seen us both working outside of our usual fields of research,” says Johann Gamper, professor at the Faculty of Computer Science of the University of Bolzano and supervisor of Daniel’s PhD course.

The new algorithm can be applied both in the analysis of the genetic causes of disease and in population genetics. In disease analysis, the recognition of regular DNA segments allows for greater precision in the search for genetic variations associated with illness in that it allows the examination to be narrowed down to a smaller segment.

In population genetics, on the other hand, the recognition of a succession of regular sequences and breakpoints provides information on the study of background genetics, as we have seen that these successions are relatively stable within a single population but may alter between differing populations.

Daniel Taliun returned to Bolzano from the United States for his doctoral viva. “The results of the research have achieved great resonance internationally, and this has led me to obtain a post as researcher at the Department of Biostatistics of the University of Michigan, one of the world’s leading centres,” concludes Daniel – now Doctor – Taliun who, in developing his algorithm, formulated and demonstrated new mathematical theorems.

Stefanie Gius | idw - Informationsdienst Wissenschaft
Further information:
http://www.eurac.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>