Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s fastest algorithm for recognising regular DNA sequences

04.05.2015

The mathematical algorithm jointly developed by EURAC and the University of Bolzano (unibz) now permits exceptionally rapid recognition of regular DNA sequences: the previously required time of 20 days is reduced to just 5 hours under the new method.

Its efficiency and methodological rigour has now led the algorithm to be incorporated in the world’s most widely-used DNA-analysis software. This momentous scientific breakthrough is the work of Daniel Taliun: today at the faculty of Computer Science of the Free University of Bolzano he discussed his doctoral thesis in information technology, completed at the EURAC Center for Biomedicine.

DNA is made up of 3 billion bases, or letters, with the sequence formed of stable segments interspersed with breakpoints. Stable segments are inherited as a single block, while the breaks allow successive sequences to recombine in new ways, ensuring genetic variation between people.

The rapid recognition of regular sequences is of great value as it allows for much more straightforward representation of DNA and for greater precision and speed in identifying those areas of DNA associated with disease. The method developed by Daniel Taliun at the EURAC’s Center for Biomedicine and University of Bolzano is of great assistance in this field; the new algorithm processes the entire DNA in 1% of the time previously required, down from 20 days to just 5 hours.

“The results caught the attention of the leaders of PLINK, the most widely-used software at global level for genetic data analysis, who asked us if they could integrate our algorithm into their program,” explains Cristian Pattaro, head of the biostatistics group at EURAC’s Center for Biomedicine and the research group’s specialist on aspects related to genetics and biostatistics.

“This project combines mathematics with information technology and genetics and has merged the skill sets of two organisations. The University of Bolzano and EURAC have applied their areas of specialisation to achieve a level of excellence that has seen us both working outside of our usual fields of research,” says Johann Gamper, professor at the Faculty of Computer Science of the University of Bolzano and supervisor of Daniel’s PhD course.

The new algorithm can be applied both in the analysis of the genetic causes of disease and in population genetics. In disease analysis, the recognition of regular DNA segments allows for greater precision in the search for genetic variations associated with illness in that it allows the examination to be narrowed down to a smaller segment.

In population genetics, on the other hand, the recognition of a succession of regular sequences and breakpoints provides information on the study of background genetics, as we have seen that these successions are relatively stable within a single population but may alter between differing populations.

Daniel Taliun returned to Bolzano from the United States for his doctoral viva. “The results of the research have achieved great resonance internationally, and this has led me to obtain a post as researcher at the Department of Biostatistics of the University of Michigan, one of the world’s leading centres,” concludes Daniel – now Doctor – Taliun who, in developing his algorithm, formulated and demonstrated new mathematical theorems.

Stefanie Gius | idw - Informationsdienst Wissenschaft
Further information:
http://www.eurac.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>