Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first -- Localized delivery of an anti-cancer drug by remote-controlled microcarriers

16.03.2011
The fantastic voyage continues -- world first for Professor Sylvain Martel's team at Polytechnique Montreal

Soon, drug delivery that precisely targets cancerous cells without exposing the healthy surrounding tissue to the medication's toxic effects will no longer be an oncologist's dream but a medical reality, thanks to the work of Professor Sylvain Martel, Director of the Nanorobotics Laboratory at Polytechnique Montréal.

Known for being the world's first researcher to have guided a magnetic sphere through a living artery, Professor Martel is announcing a spectacular new breakthrough in the field of nanomedicine. Using a magnetic resonance imaging (MRI) system, his team successfully guided microcarriers loaded with a dose of anti-cancer drug through the bloodstream of a living rabbit, right up to a targeted area in the liver, where the drug was successfully administered. This is a medical first that will help improve chemoembolization, a current treatment for liver cancer.

Microcarriers on a mission

The therapeutic magnetic microcarriers (TMMCs) were developed by Pierre Pouponneau, a PhD candidate under the joint direction of Professors Jean-Christophe Leroux and Martel. These tiny drug-delivery agents, made from biodegradable polymer and measuring 50 micrometers in diameter — just under the breadth of a hair — encapsulate a dose of a therapeutic agent (in this case, doxorubicin) as well as magnetic nanoparticles. Essentially tiny magnets, the nanoparticles are what allow the upgraded MRI system to guide the microcarriers through the blood vessels to the targeted organ.

During the experiments, the TMMCs injected into the bloodstream were guided through the hepatic artery to the targeted part of the liver where the drug was progressively released. The results of these in-vivo experiments have recently been published in the prestigious journal Biomaterials and the patent describing this technology has just been issued in the United States.

The Nanorobotics Laboratory, which aims to develop new platforms for medical intervention, works closely with interventional radiologist Dr. Gilles Soulez and his team of the Imaging Research Platform at the Centre hospitalier de l'Université de Montréal Research Centre to develop medical protocols adapted for future use on humans.

Dr. Martel and his team receive financial support from the Canadian Institutes of Health Research (CIHR), the Canada Research Chair (CRC), the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds québécois de la recherche sur la nature et les technologies (FQRNT) and the Fonds de la recherche en santé du Québec (FRSQ).

About Polytechnique Montréal

Founded in 1873, Polytechnique Montréal is one of Canada's leading engineering university institutions in terms of both teaching and research. It is also the largest engineering university in Québec for the size of its student body and the scope of its research activities. With over 37,000 graduates, Polytechnique Montréal has trained nearly 30% of the current members of the Ordre des ingénieurs du Québec. Polytechnique provides training in 14 engineering specialties, has 230 professors and over 6,700 students. It has an annual operating budget of more than $100 million, in addition to a $70-million research fund.

RÉFÉRENCE : Pouponneau, P., Leroux, J.-C., Soulez, G., Gaboury, L. and Martel, S. (2011). Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials. Volume 32, Issue 13, May 2011, Pages 3481-3486. (DOI: 10.1016/j.biomaterials.2010.12.059)

Photos of Dr. Martel and images of the in-vivo course taken by the microcarriers available on request.

Polytechnique Montréal's Nanorobotics Laboratory: www.nano.polymtl.ca/

March 16, 2007, Fantastic Voyage: from Science Fiction to Reality? http://www.polymtl.ca/carrefour/en/article.php?no=2502

Source: Annie Touchette
Communications and recruitment department
Polytechnique Montréal
514 340-4711, ext. 4415, or 514 231-8133
Media information: Andrée Peltier, apeltier@ca.inter.net
Relations publiques Andrée Peltier
514.846.0003 - 514.944.8689

Dr. Sylvain Martel | EurekAlert!
Further information:
http://www.polymtl.ca

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>